不仅完美地迁移眼影、眉毛、口红等基础妆容,而且能很好地处理美瞳、睫毛、卧蚕等细腻细节,美图影像实验室(MTlab)自主研发的这个全新妆容迁移算法可以令爱美的你尝试各种类型和风格的模特妆容,最终找到适合自己的完美妆容。
一是原图和目标图五官位置和姿态都不固定,如何让网络感知不同位置上的妆容信息?
二是该任务很难获取真实环境中的一对一数据,如何让网络正确监督学习?
鲁棒性:不仅在姿态和肤色差异不大的情况下有稳定效果,还要保证在复杂姿态、多变光照、特殊妆容的场景下依然能保持较好效果;
全面性:不仅能迁移眼影、眉毛、口红等颜色信息,还需要迁移睫毛、美瞳、卧蚕、亮片闪片等较为精确的细节信息。
通过 MTlab 自主研发的人脸关键点检测算法检测出原始尺寸的原图和目标图的人脸点,并做摆正、裁脸等操作得到流程图中以及后续步骤提到的原图、目标图、原图人脸点和目标图人脸点;
通过 MTlab 自主研发的五官分割算法将原图和目标图的眉毛、眼睛、嘴唇和皮肤分割出来作为后续模块的输入;
将目标图、原图人脸点和目标图人脸点输入姿态矫正模块,并得到姿态矫正后的目标图,姿态矫正后的目标图整体上会和原图的姿态一致,并且整个脸的五官大小比例会更接近原图;
把矫正后的目标图和原图输入 G 网络得到结果图,根据结果图和目标图计算 Cycle consistency loss、Perceptual loss 和 Makeup loss,同时把结果图、原图人脸点、原图五官 mask 输入 MakeupGan 模块计算 Makeup gan loss,这些 loss 控制整个网络的训练;
将实际裁好后的图输入训练好的 G 网络可以得到网络输出的结果图,结合 MTlab 自研的颜色迁移算法将原图的颜色和光照迁回一部分到结果图上确保结果更加自然,并将处理后的结果图逆回到原始尺寸原图中即完成算法过程。