Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

AI芯片大战,IP将扮演什么角色?

近年来,我们看到人工智能(AI)和机器学习(ML)的应用扩展到更广泛的计算机和移动应用领域。现在,就像低成本图形处理单元(GPU)的普及推动了深度学习革命一样,硬件设计(而不是算法)被预测为下一个重大发展提供基础。

随着大型企业,初创企业和中小型企业等公司争相建立支持AI生态系统的基本AI加速器技术,包括知识产权(IP)在内的无形资产的保护将成为该领域成功的关键方面之一。

近年来,ML模型的size大幅增加(大约每3.5个月翻一番),已成为ML模型准确性增长的主要驱动力之一。为了保持这种近乎摩尔定律的复杂性增长,市场上对新型AI加速器有明确的需求,这些类型的AI加速器可以支持更先进的ML模型(用于训练和推理)。

在新的AI芯片中特别受益的领域之一是边缘AI推理。这种在设备本身而不是在远程(通常是云)服务器上运行AI推理的相对较新的趋势提供了许多潜在的好处,例如消除了处理过程中的等待时间并减少了数据传输和带宽,还可能增加了隐私和安全性。鉴于这些优势,边缘AI芯片市场的增长令人瞩目。2017年才推出首款商用企业边缘AI芯片,但Deloitte预测,2020年边缘AI芯片的销量将超过7.5亿片。

2018年,全球AI芯片市场整体价值66.4亿美元,预计未来几年将大幅增长,到2025年将达到911.9亿美元,复合年增长率为45.2%。因此,可以理解的是,许多公司都在致力于开发AI芯片。但是,该市场有望经历与CPU,GPU和基带处理器市场相似的增长周期,最终将由一些大型厂商主导。知识产权(尤其是专利)是英特尔(Intel)、高通(Qualcomm)和ARM等家喻户晓的公司取得成功的关键,它很可能在人工智能芯片领域扮演类似的重要角色。

参与AI芯片市场竞争的公司范围涵盖英特尔高通,ARM或英伟达等“芯片巨头”,再到传统上专注互联网的科技公司(例如Alphabet或百度),以及众多利基实体,包括Graphcore,Mythic或Wave Computing。各种通常看起来像芯片市场“局外人”的大公司也参与其中——例如,由于绝大多数边缘 AI芯片(90%)目前都进入消费设备领域,因此许多智能手机制造商都没有错失这一机会并开发了他们自己的AI加速器(例如,iPhone系列中使用的苹果公司的八核神经引擎)。

这场竞赛目前仍未决定谁将占据主导地位。技术专家和投资者都将密切关注哪些公司的技术最有前途,这个领域将不可避免地在投资、收购和失败中发展。在未来几年内,我们可以期待看到市场领导者的出现。谁将成为人工智能芯片领域的王者,CPU市场是英特尔(77%的市场份额),基带处理器市场是高通(43%的市场份额)?

当前的领先者似乎是英特尔和英伟达。据路透社报道,英特尔的处理器目前在AI推理市场上占主导地位,而英伟达则在AI训练芯片市场上占主导地位。英特尔(Intel)和英伟达(Nvidia)都没有固步自守,这从它们最近的收购和产品发布中就可以看出,这两家公司的目标似乎都是“取代”对方。就在2019年12月,英特尔斥资20亿美元收购了总部位于以色列的深度学习加速器开发商Habana Labs。

Habana的Goya和Gaudi加速器包括许多技术创新,例如支持远程直接内存访问(RDMA)–从一台计算机的内存直接访问另一台计算机的内存,而无需使用任何计算机的操作系统–该功能对大规模并行计算机集群特别有用。因此,可以在云上(英伟达目前占主导地位)训练复杂模型。另一方面,英伟达最近发布了其Jetson Xavier NX边缘AI芯片,该芯片具有高达21 TOPS的惊人加速计算能力,尤其是针对AI推理。

一些规模较小的公司也令人兴奋,例如总部位于布里斯托尔的Graphcore,或总部位于美国的Mythic。Graphcore最近与微软合作,以19.5亿美元的估值筹集了150mat美元。他们的旗舰产品——智能处理单元(IPU)——拥有令人印象深刻的性能指标和有趣的架构——例如,IPU将整个ML模型保存在处理器内部,使用处理器内存来最大限度地减少延迟和最大化内存带宽。Mythic的体系架构同样值得关注,它结合了硬件技术,如computing-in-memory(无需构建缓存层次结构),数据流体系架构(特别适用于基于图的应用程序,例如推理),和模拟计算(使用存储器元件作为可调电阻,直接在存储器内部计算神经网络矩阵运算)。Mythic在商业方面也不落后于Graphcore——它在2019年6月从家庭投资者(如软银)获得了3000万美元的融资。

目前尚不清楚谁最终将主导AI芯片市场,但从CPU和基带处理器领域等历史发展中得到的一个重要教训是,知识产权在决定谁将胜出、谁将长期生存方面起着重要作用。

英特尔高通等公司提交的专利申请数量表明,强大的专利组合对于芯片市场商业成功的重要性。这些专利自1996年以来一直在增加,现在每年约有10000个已公布的专利系列。考虑到芯片设计反向工程的内在可能性和fabless模式在业界的普遍使用,任何实体都很难在没有专利组合的情况下保护其知识产权,同时辅以其他形式的保护,如商业机密(或“专有技术”)。
高通英特尔的专利系列。
芯片行业的许多市场领导者都围绕着专利授权建立了自己的商业模式。值得注意的例子包括高通和ARM控股。尽管高通的大部分收入来自芯片制造,但它的大部分利润来自专利授权业务。高通的授权许可业务过去两年可能受到影响,但这在很大程度上是由于与苹果(Apple)的纠纷。苹果已向高通一次性支付45亿美元和解金,两家公司未来还将签署一项为期6年的授权协议,从而解决了苹果与高通之间的纠纷。

ARM更进一步,几乎所有的收入都来自IP授权,而从未出售过自己的芯片。专利授权对高通和ARM来说非常有利可图,对那些在人工智能芯片领域建立了强大专利组合的公司来说,可能也同样有利可图。ARM的商业模式将为那些没有资源涉足芯片制造的初创企业提供一个有吸引力的选择,即使是在规模较小的公司成长之际,通过保持 fabless生产来降低风险的动机也将保持强劲。

对于那些有意被收购的初创公司来说,毫无疑问,知识产权对于最强劲的估值至关重要。如果不是因为Habana的专利组合可以追溯到2016年,英特尔不太可能在2019年底以20亿美元的价格收购Habana;如果Graphcore没有超过60个专利系列(共享同一初始专利申请的专利组),它也不太可能与微软合作,获得其目前19.5亿美元的估值。因此,投资者的退出策略仍然决定了对健全的知识产权策略的需要。

相关部门的另一个重要教训是与专利侵权相关的巨大风险和报酬。就在2020年1月,苹果和Broadcom因侵犯Cal Tech的Wi-Fi技术专利而被判支付11亿美元的赔偿金,法院裁定该专利被用于Broadcom的无线芯片中。据彭博社报道,这是有史以来第六大与专利有关的判决。因此,企业出于进攻和防守目的建立自己的专利组合的必要性仍然很明确(防御组合意味着可能会受到反诉讼,从而免受竞争对手专利诉讼的影响)。

企业没有忽视知识产权问题,有记录显示,人工智能芯片领域已有2000多个专利系列。新专利申请数量正在迅速增加——仅英特尔一家就在过去5年里为人工智能芯片提交了160份专利申请。因此,现有的市场领导者和新进入者都应注意英特尔的做法,并要谨记不要错过知识产权保护对其发明的重要性,尤其是在早期阶段。

在过去的二十年中,围绕知识产权尤其是专利法的法律环境发生了很大变化。历史专利和技术出版物的数量不断增加,这也继续提高了对专利局和专利所有人寻求保持专利质量的要求。然而,毫无疑问,知识产权将再次证明在这个新兴行业的重要性。经验丰富的技术人员和知识产权从业人员将利用过去的经验教训来完善他们的战略,而那些采用正确方法的公司将获得成功,这不仅取决于他们技术的优点,而且取决于如何充分利用他们的知识产权。
半导体行业观察
半导体行业观察

最有深度的半导体新媒体,实时、专业、原创、深度,30万半导体精英关注!专注观察全球半导体最新资讯、技术前沿、发展趋势。

产业AI芯片
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
Qualcomm机构

高通公司(英语:Qualcomm,NASDAQ:QCOM)是一个位于美国加州圣地亚哥的无线电通信技术研发公司,由加州大学圣地亚哥分校教授厄文·马克·雅克布和安德鲁·维特比创建,于1985年成立。两人此前曾共同创建Linkabit。 高通公司是全球3G、4G与5G技术研发的领先企业,目前已经向全球多家制造商提供技术使用授权,涉及了世界上所有电信设备和消费电子设备的品牌。根据iSuppli的统计数据,高通在2007年度一季度首次一举成为全球最大的无线半导体供应商,并在此后继续保持这一领导地位。其骁龙移动智能处理器是业界领先的全合一、全系列移动处理器,具有高性能、低功耗、逼真的多媒体和全面的连接性。目前公司的产品和业务正在变革医疗、汽车、物联网、智能家居、智慧城市等多个领域。

http://www.qualcomm.com/
Microsoft机构

微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

https://www.microsoft.com/en-us/about
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

操作系统技术

操作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内核与基石。操作系统需要处理如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

百度智能云机构

百度是全球最大的中文搜索引擎,是一家互联网综合信息服务公司,更是全球领先的人工智能平台型公司。2000年1月1日创立于中关村,公司创始人李彦宏拥有“超链分析”技术专利,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

http://www.baidu.com
Graphcore拟未机构

Graphcore拟未为人工智能打造计算机系统,由先进的智能处理器(IPU)提供动力,旨在满足人工智能独特的计算要求。公司于2016年成立于英国布里斯托,目前海外办公室和客户遍布欧洲、亚洲和美洲国家及地区。拟未的计算系统广泛应用在各行各业的人工智能应用中,包括制药、金融服务、汽车行业和消费互联网服务。

http://www.graphcore.cn/
相关技术
Wave Computing机构

Wave Computing 是一家位于美国硅谷、致力于推动人工智能深度学习从边缘计算到数据中心的计算加速方案的公司。 Wave Computing, Inc正在用它基于数据流驱动架构(Dataflow Architecture)、系统和解决方案对AI深度学习现有的计算架构产生革命性的影响。与传统架构相比,它为AI计算提供了数量级的性能改进。公司的愿景是“为客户提供强大的深度学习计算能力、提升深度学习的速度和效率,无论客户数据是来源于数据中心还是边缘”。Wave将旗下的数据流驱动架构(Dataflow Architecture)和MIPS嵌入式RISC多线程CPU核及IP进行整合,致力于为下一代AI技术的发展提供源动力。Wave Computing被授予Frost&Sullivan 2018年“机器学习行业技术创新领袖”(Machine Learning Industry Technology Innovation Leader),并被CIO应用杂志评选为“Top 25人工智能提供商”(Top 25 Artificial Intelligence Providers)之一。加上MIPS,Wave目前拥有全球数百客户以及超过425项授权和待决专利。

https://wavecomp.ai/
推荐文章
暂无评论
暂无评论~