2019 年对自然语言处理(NLP)来说是令人印象深刻的一年。本文将着重讲述一些 2019 年我在机器学习和自然语言处理领域有所见闻的重要事件。我会把重点主要放在自然语言处理上,但也会涉及若干人工智能领域的趣闻。主要内容包括研究论文、博客、工具和数据集、社区讨论、教程资源等。
长文预警,建议先点收藏。
目录
- 研究论文
- 机器学习/自然语言处理的创造力和社群
- 工具和数据集
- 博文文章
- 教程资源
- 人工智能伦理学
研究论文
2019 年,谷歌人工智能团队带来了 ALBERT,它是用于情境化语言表征的自监督学习模型 BERT 的精简版。主要的改进在于减少了冗余,更加有效地分配了模型的性能。此方法在 12 个自然语言处理任务上达到了当前最佳性能(SOTA)。
2018 年底,英伟达的研究者们发表了一份热门论文 (A Style-Based Generator Architecture for Generative Adversarial Networks)(取名为 StyleGAN),提出了对抗生成网络的另一种生成器架构,灵感来自于风格迁移问题。2019 年,这份工作有了更新 (Analyzing and Improving the Image Quality of StyleGAN),着重研究了诸如重新设计生成器正则化的过程等方面。
2019 年,我最喜欢的论文之一是 code2seq (https://code2seq.org/),这是一种从结构化表征的代码中生成自然语言序列的方法。这样的研究可以对自动代码摘要和文档化的应用起到助益。
你可曾想过,有没有可能为生物医学文本挖掘训练一个生物医学的语言模型?答案就是 BioBERT (BioBERT: a pre-trained biomedical language representation model for biomedical text mining),这是一个可以从生物医学文献中提取重要信息的语境化模型。
在 BERT 发表后,Facebook 的研究者们发布了 RoBERTa (RoBERTa: A Robustly Optimized BERT Pretraining Approach),引入新的优化方法来改进 BERT,也在多项自然语言处理的基准测试中达到了当前最优效果。
最近,Facebook 人工智能部门的研究者们还发表了一种基于全注意力层来改进 Transformer 语言模型效率的方法 (https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/)。这个研究组的其它工作 (https://ai.facebook.com/blog/-teaching-ai-to-plan-using-language-in-a-new-open-source-strategy-game/) 还包括了如何教人工智能系统通过制定计划来使用自然语言。
全注意力层。图来:https://arxiv.org/pdf/1907.01470.pdf
可解释性仍然是机器学习和自然语言处理领域的重要议题。这篇论文 (Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI) 对于可解释性、分类法以及未来研究的机遇提供了一份全面的综述。
Sebastian Ruder 的博士论文也值得一看,题为:Neural Transfer Learning for Natural Language Processing。
新加坡国立大学等机构的研究者开发了一种方法 (Emotion Recognition in Conversations with Transfer Learning from Generative Conversation Modeling),能够在对话的情境下实现情绪识别,这将为情感化的对话生成铺平道路。
另一项相关工作则是用一种叫做 DialogueGCN (DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation) 的图神经网络方法,来探测对话中的情绪。作者还提供了代码实现:https://github.com/SenticNet/conv-emotion/tree/master/DialogueGCN。
谷歌量子人工智能团队在 Nature 发表了一篇论文,声称开发了一台量子计算机,速度比世界上最大的超级计算机更快。
之前提到过,可解释性是神经网络架构里需要大幅改进的一个领域。这篇论文 (Attention is not not Explanation) 讨论了在语言模型的情境下,注意力机制作为可解释性的一种可靠方法所具有的局限性。
神经逻辑机 (Neural Logic Machines) 是一种神经符号网络架构,在归纳学习和逻辑推理上效果都不错。这个模型尤为擅长数组排序和寻找最短路径之类的任务。
神经逻辑机架构。图源:https://arxiv.org/pdf/1904.11694.pdf
这里还有一篇论文 (On Extractive and Abstractive Neural Document Summarization with Transformer Language Models),把 Transformer 语言模型应用到了抽取式和摘要式 Neural document summarization。
研究者们开发出了一种方法,着重于利用比较来打造和训练机器学习模型。这种方法 (https://blog.ml.cmu.edu/2019/03/29/building-machine-learning-models-via-comparisons/) 不需要大量的特征-标签对,它将图像与之前见过的图像相比较,以判定这张图像是否应该属于某个标签。
Nelson Liu 等发表的论文 (Linguistic Knowledge and Transferability of Contextual Representations) 讨论了 BERT 和 ELMo 等预训练的语境模型所捕捉到的语言学知识类型。
XLNet 是一种自然语言处理的预训练方法,在 20 个任务上比 BERT 更胜一筹。我在这里(https://medium.com/dair-ai/xlnet-outperforms-bert-on-several-nlp-tasks-9ec867bb563b) 写过一篇关于这项重要研究的总结。
这份 DeepMind 的研究 (Learning and Evaluating General Linguistic Intelligence) 展示了一项涉及面广泛的实证调查结果,其目的为评估用于各种任务的语言理解模型。这项分析对于更好地理解语言模型捕获的内容、提高模型效率尤为重要。
VisualBERT (VisualBERT: A Simple and Performant Baseline for Vision and Language) 是一个小而强大的框架,用于为图像-语言类任务建模,相关任务包括 VQA 、Flickr30K 等。这个方法运用了堆叠的 Transformer 层和自注意力机制,来对齐一段文本和一块图像区域之中的元素。
这份研究 (To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks) 提供了一份比较自然语言处理迁移学习方法的详尽分析,以及为自然语言处理工作者们准备的指南。
Alex Wang 和 Kyunghyun 提出了 BERT 的一种实现方法 (BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model),可以生成高质量且流畅的结果。你可以使用这份 Colab 笔记本来试试:https://colab.research.google.com/drive/1MxKZGtQ9SSBjTK5ArsZ5LKhkztzg52RV
Facebook 的研究者们发布了 XLM 的 PyTorch 版代码 (https://github.com/facebookresearch/XLM),这是一个跨语言的预训练模型。
这份研究 (https://www.cl.uni-heidelberg.de/statnlpgroup/blog/rl4nmt/) 对神经机器翻译领域强化学习算法的应用做了综合分析。
这篇在 JAIR 上发表的论文 (A Survey of Cross-lingual Word Embedding Models) 对跨语言词嵌入模型的训练、评估和使用做了全面综述。
The Gradient 上发表了一篇极佳的文章 (https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/),详述了当前强化学习的局限性,并提供了利用分层强化学习的潜在发展方向。很快就有人发布了一系列优秀的教程 (https://github.com/araffin/rl-tutorial-jnrr19/blob/master/1_getting_started.ipynb),你可以通过这组教程来开始接触强化学习。
这篇论文 (Contextual Word Representations: A Contextual Introduction) 是情境化词表征的精简版入门读物。