Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

仵冀颖作者H4O编辑

AAAI 2020 提前看 | 三篇论文解读问答系统最新研究进展

在本篇提前看中,我们重点聚焦 AAAI 2020 中与问答系统(Q&A)相关的文章。问答系统是自然语言处理领域的一个重要研究方向,近年来各大国际会议、期刊都发表了大量与问答系统相关的研究成果,实际工业界中也有不少落地的应用场景,核心算法涉及机器学习、深度学习等知识。问答系统(Q&A)的主要研究点包括模型构建、对问题/答案编码、引入语义特征、引入强化学习、内容选择、问题类型建模、引入上下文信息以及实际应用场景问题解决等。在本次 AAAI2020 中,直接以「Question/Answer」作为题目的论文就有 40 余篇。本文选取了其中三篇进行详细讨论,内容涉及语义特征匹配、模型构建和医学场景应用等。

1、Improving Question Generation with Sentence-level Semantic Matching and Answer Position Inferring

论文地址:https://arxiv.org/pdf/1912.00879.pdf

本文介绍的是佛罗里达大学吴大鹏教授组的工作,主要聚焦问答系统(Q&A)的反问题---问题生成(Question Generation,Q&G)。问题生成的目的是在给定上下文和相应答案的情况下生成语义相关的问题,问题生成在教育场景、对话系统、问答助手等应用领域具有巨大的潜力。问题生成任务可分为两类:一类是基于规则的方法,即在不深入理解上下文语义的情况下手动设计词汇规则或模板,将上下文转换成问题。另一类是基于神经网络的、直接从语句片段中生成问题词汇的方法,包括序列-序列模型(seq-to-seq)、编码器解码器(encoder-decoder)等。本文讨论的是后一种基于神经网络的问题生成方法。

目前,基于神经网络的问题生成模型主要面临以下两个问题:(1)错误的关键词和疑问词:模型可能会使用错误的关键词和疑问词来提问(见表 1);(2)糟糕的复制机制:模型复制与答案语义无关的上下文单词(见表 2)。表 1 和表 2 中使用的基线算法为 NQG++[1] 和 Pointer-generator[2]。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
理论AAAI 2020问答系统
相关数据
线性分类器技术

机器学习通过使用对象的特征来识别它所属的类(或组)来进行统计分类。线性分类器通过基于特征的线性组合的值进行分类决策。 对象的特征也称为特征值,通常在称为特征向量的向量中呈现给机器。

最大池化技术

最大池化(max-pooling)即取局部接受域中值最大的点。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

序列到序列技术

多任务学习技术

暂无评论
暂无评论~