Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

智能运筹助力企业提升决策效率、优化决策质量

奇点云决策引擎更关注执行过程中的计划决策效率和决策质量。

人工智能和大数据时代,越来越多的云上数据和越来越智能的模型开始辅助人们做出各种最优决策,从运营效率、成本节约、最优配置等方方面面,实现降本增效,进一步提升商业效率。京东、美团、滴滴、顺丰等众多知名厂商,都通过运筹优化平台,改造其供应链、智能派单、司乘匹配、智能分拣等等。


零售行业环节众多,从生产到仓库、到线下门店的供应链中,即使最终产品的需求非常稳定,长鞭效应也经常会发生。原因在于供应链中各节点只根据其相邻的需求信息进行生产或者供应决策时,需求信息的不真实性会沿着供应链逆流而上,逐级放大。更准确的需求预测只是决策的一个步骤,还有随着销量等业务变动过程和流程管理过程中的库存订货决策、价格波动决策、短缺博弈决策等决策问题。长鞭效应表明即使预测再精准,如果对后续的流程决策过程没有有效管理,精准预测带来的收益也会被不合理的安全库存带来的损失抵消掉。


很多企业的决策过程往往过于依赖对应岗位的个人经验,而企业员工在这些事情上一方面获取的信息不完全,另一方面决策环节存在大量估算对比的重复工作,导致决策方案输出的低效和不稳定。员工重复劳动限制了个人成长,企业耗费了人力资源和宝贵的决策判断时间。针对企业优秀计划决策经验方法的快速复制、集中高效决策、快速信息反馈和计划决策效果预估等需求,奇点云在数据中台的基础上,推出了决策引擎的应用。

奇点云决策引擎


数据采集与管理完善,对数据进行信息提取,了解事物的规律,并不能释放数据的巨大价值。数据要产生实际价值,必须真正提升决策质量,实现决策的自动化、流程化、规范化


在为客户完成数据中台的开发后,提供基于中台数据资产的智能决策服务,根据场景的不同,选择最大收益期望决策、最大最小收益决策、最小最大后悔值决策、马尔科夫博弈决策等决策方式,并结合运筹优化算法和强化学习对决策目标进行求解。       

现实生活中,有很多问题可以描述成优化问题,然后利用运筹优化的知识加以解决。

比较核心的两个步骤是:建模(modeling)和求解(solve)。奇点云根据成熟的软件工具包(cplex, gurobi, glpk,lpsolve, scip ...)给出经典运筹优化问题的baseline解,快速上线试运行。在运行的过程中根据结果评估的核心指标,结合运筹优化算法和强化学习,对算法和求解过程进一步优化,使得计划决策模型、求解过程、评估体系能够满足客户业务发展所需的计划决策流程。


奇点云预测引擎以需求预测作为切入点,决策引擎则关注执行过程中的计划决策效率和决策质量。对于商品的季节性的影响和市场的供应的不稳定性需要补货决策合理跟进;铺货完成后,具体仓库到门店之间的补货,门店到门店之间的调货,依然需要客户的工作人员进行大量的工作,来生成每一期的补货、调货方案;为了完成铺货、补调货的同时保证市场状态的松紧平衡,也需要一个合理的分配方案。


计划决策的核心是库存的分配,包含仓库库存、在途库存、店铺库存等。库存管理是对制造业或服务业生产、经营全过程的各种物品,产成品以及其他资源进行管理和控制,使其储备保持在经济合理的水平上。利用历史数据实现实时更新的需求预测,为企业提供补货建议。合理地设计仓储货架摆放,商品区域划分,高低货架摆放,入库出库最优路径调配等,可以为企业节省巨额的成本以及大量人力劳动成本。可以减少资金占用,提升库存周转率,提升自动化管理,提高人员与设备利用率,降低库存负担。

运筹优化算出最优调货策略

奇点云某大时尚客户,线下门店有几千家,每家店有几百个sku,通过历史数据预测每家店铺每个sku在未来的销量,必然有的店铺会出现库存不足,而有的店铺出现库存积压的问题,那么通过将库存积压的店铺的商品,调货到库存不足的店铺,将会提高公司的整体毛利。店铺与店铺之间的物流成本不同,缺货和积压的商品种类也有差异,通过运筹规划中的混合整数规划的方法,计算出最优的调货策略,混合整数规划的模型可以抽象建模如下:

通过对调补货过程的建模求解,帮助客户业务人员对应的重复工作量减少了80%,计划决策时间缩短了三天。业务人员能够在决策时看到更多的数据依据,计划决策输入输出清晰高效。

结语   


客户的业务流程中,大量环节会涉及到决策问题,如何高效利用数据来驱动决策是奇点云决策引擎的核心。在上篇StartDT AI Lab专栏文章中我们提到了精准需求预测的重要性),而实际中预测总是有偏差,带有不确定性,需要在不同环节产生的多级不确定性情况下做出决策。结合需求预测和决策引擎,让数据决策更加智能。未来我们会不断在需求预测与决策引擎领域耕耘,帮助客户创造更大的价值。
奇点云 | StartDT
奇点云 | StartDT

奇点云(StartDT)成立于2016年,旗下有“奇点云”、“GrowingIO”两大品牌。 聚焦数据全生命周期,奇点云以自主研发的数据云操作系统为能力核心,提供自主可控、安全合规的大数据基础软件产品与全链路服务。 至今,奇点云已服务零售、制造、金融、政企等多行业的1500+客户,陪伴客户成功实践数字化,加速产业转型升级,构建面向DT时代的竞争力。

入门
1
相关数据
人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

运筹优化技术

最优化问题(英语:Optimization problem)在数学与计算机科学领域中,是从所有可行解中寻找最优良的解的问题。根据变数是连续的或离散的,最佳化问题可分为两类:连续最佳化问题与组合优化。

规范化技术

规范化:将属性数据按比例缩放,使之落入一个小的特定区间,如-1.0 到1.0 或0.0 到1.0。 通过将属性数据按比例缩放,使之落入一个小的特定区间,如0.0到1.0,对属性规范化。对于距离度量分类算法,如涉及神经网络或诸如最临近分类和聚类的分类算法,规范化特别有用。如果使用神经网络后向传播算法进行分类挖掘,对于训练样本属性输入值规范化将有助于加快学习阶段的速度。对于基于距离的方法,规范化可以帮助防止具有较大初始值域的属性与具有较小初始值域的属相相比,权重过大。有许多数据规范化的方法,包括最小-最大规范化、z-score规范化和按小数定标规范化。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

顺丰控股机构

1993年,顺丰诞生于广东顺德。自成立以来,顺丰始终专注于服务质量的提升,持续加强基础建设,积极研发和引进具有高科技含量的信息技术与设备以提升作业自动化水平,在国内外建立了庞大的信息采集,市场开发,物流配送,快件收派等速运业务机构及服务网络。 在持续强化速运业务的基础上,顺丰坚持以客户需求为核心,积极拓展多元化业务,针对电商,食品,医药,汽配,电子等不同类型客户开发出一站式供应链解决方案,并提供支付,融资,理财,保价等综合性的金融服务。与此同时,依托强大的物流优势,成立顺丰优选,为客户提供品质生活服务,打造顺丰优质生活体验。

http://www.sf-express.com/
京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东零售、京东物流、京东科技子集团、印尼&泰国海外合资跨境电商等核心业务。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作。

https://www.jd.com
相关技术
推荐文章
暂无评论
暂无评论~