Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

魔王、一鸣参与

准确率至上已是过去式,这些趋势在2020年的AI领域更受关注

AI 领域最杰出的头脑如何总结 2019 年技术进展,又如何预测 2020 年发展趋势呢?本文介绍了 Soumith Chintala、Celeste Kidd、Jeff Dean 等人的观点。

人工智能不是将要改变世界,而是正在改变世界。在新年以及新的十年开启之际,VentureBeat 采访了人工智能领域最杰出的头脑,来回顾人工智能在 2019 年的进展,展望机器学习在 2020 年的前景。受访者包括 PyTorch 之父 Soumith Chintala、加州大学教授 Celeste Kidd、谷歌 AI 负责人 Jeff Dean、英伟达机器学习研究负责人 Anima Anandkumar,以及 IBM 研究主管 Dario Gil。

其中部分人预测半监督学习和神经符号方法等子领域将出现进展,而几乎所有受访者一致认同 2019 年基于 Transformer 的自然语言模型取得巨大进步,也都认为对人脸识别等争议性技术的讨论仍会持续。此外,他们还期望 AI 领域不再只以准确率论输赢。

PyTorch 之父 Soumith Chintala

PyTorch 负责人、首席工程师和创造者 Soumith Chintala

不论用哪种衡量方式,PyTorch 都是现在全世界最流行的机器学习框架。PyTorch 是基于 2002 年发布的 Torch 开源框架的衍生,于 2016 年发布初始版本,目前其扩展和库均稳步增长。

在 2019 年秋季举办的 PyTorch 开发者大会上,Facebook 发布了 PyTorch 1.3 版本,该版本支持量化和 TPU 支持。会上还发布了深度学习可解释性工具 Captum 和 PyTorch Mobile。此外,还有机器人框架 PyRobot 和代码共享神器 PyTorch Hub,鼓励机器学习从业者拥抱可复现性。

在这次 PyTorch 开发者大会上,Chintala 表示:2019 年机器学习领域几乎没有突破性进展。

「我认为,自 Transformer 之后,基本上没有什么突破。2012 年 CNN 在 ImageNet 大赛上夺冠,迎来了高光时刻,2017 年是 Transformer。这是我的个人看法。」他说。

他认为 DeepMind 的 AlphaGo 对强化学习的贡献是突破性的,但其结果很难在现实世界的实际任务中实现。

Chintala 还认为,PyTorch 和 TensorFlow机器学习框架的演化改变了研究者探索新思路和做研究的方式。「这些框架使研究者的速度比之前快了一两个数量级,从这个角度看,这是一项巨大突破。」

2019 年,谷歌和 Facebook 的开源框架都引入了量化,用于提升模型训练速度。Chintala 预测,2020 年 PyTorch 的 JIT 编译器和神经网络硬件加速器(如 Glow)等工具的重要性和采用范围将迎来「爆发」。

「从 PyTorch 和 TensorFlow 中,可以看到框架的融合趋势。量化以及大量其他较低级功能出现的原因是,框架之争的下一战是编译器——XLA(TensorFlow)、TVM(陈天奇团队)、Glow(PyTorch),大量创新即将出现。未来几年,你们会看到如何更智能地量化、更好地融合、更高效地使用 GPU,以及如何针对新硬件执行自动编译。」

和本文大多数受访者一样,Chintala 预测 2020 年 AI 社区将用更多度量指标衡量 AI 模型的性能,而不仅仅是准确率。社区将注意力转向其他因素,如创建模型所需的电量、如何向人类解释输出结果,以及如何使 AI 更好地反映人类想要构建的社会。

「回望过去五六年,我们只关注准确率和原始数据,例如『英伟达的模型更准确,还是 Facebook 的模型更准确?』我认为,2020 年我们将(以更复杂的方式)思考,如果模型不具备良好的可解释性(或满足其他标准),那就算准确率高出 3% 又怎样呢?」Chintala 表示。

加州大学教授 Celeste Kidd

加州大学伯克利分校发展心理学家 Celeste Kidd。

Celeste Kidd 是加州大学伯克利分校 Kidd 实验室的主管,她和她的团队致力于探索儿童的学习方式。他们的见解可以帮助那些尝试以类似于培养儿童的方式训练模型的神经网络创建者。

Kidd 表示:「人类婴儿不需要标注数据集,但他们也能学习得很好。这其中的关键在于我们需要理解这其中的原理。」

她认为,当你对婴儿的行为综合分析后,你确实会看到他们理解一些事物的证据,但是他们并非完美的学习者。「婴儿能自动学习很多东西」这种说法是对婴儿能力的过度美化。

「婴儿很棒,但他们也会出很多错。我看到人们随意地进行对比,将婴儿的行为理想化了。我认为人们将会更加重视如何将当前的研究和未来的研究目标之间的联系」

在 AI 领域,「黑箱」一词已诞生多年,该词常用于批评神经网络缺乏可解释性。但 Kidd 认为,在 2020 年,可能不会再有这种对神经网络的认识了。

「黑箱这个观点是虚假的……大脑也是黑箱,而我们在了解大脑工作原理方面已经获得巨大进展。」

在为「黑箱」理论祛魅的过程中,Kidd 阅读了 MIT-IBM Watson AI 实验室执行主任 Aude Oliva 的研究。

「我们当时讨论过这件事。我之前认为系统是黑箱,她批评了我,说当然不是黑箱。你当然可以将它分割开来,查看其工作方式,并运行实验,就像我们在了解认知过程时所做的实验那样。」

上个月,Kidd 在 NeurIPS 2019 开幕式上发表主旨演讲。她的演讲主要涉及人类大脑如何坚持己见、注意力系统以及贝叶斯统计。

她注意到了内容推荐系统如何操纵人类的想法。追求让用户最大程度参与的系统对人类如何形成想法和观点有着重大影响。

2020 年,她希望看到更多人意识到技术工具和技术决策对现实生活的影响,拒绝「工具创造者不对工具使用者的行为和后果负责」的观点。

「我听到太多人用『我不是卫道士』这样的说辞自我辩护。我认为必须有更多人意识到这是不诚实的。」

「作为社会一员,尤其是作为研发这些工具的人,我们需要直接正视随之而来的责任。」

谷歌 AI 负责人 Jeff Dean

谷歌 AI 负责人 Jeff Dean

Jeff Dean 在谷歌工作了二十年,现已领导谷歌 AI 近两年,他是谷歌早期很多搜索和分布式网络算法的设计师,谷歌大脑的早期成员。

Jeff Dean 在 NeurIPS 2019 会议上发表了两场演讲,这两场演讲分别关于使用机器学习设计 ASIC 半导体(ML for Systems)和 AI 社区帮助解决气候变化的方法(Tackling Climate Change with ML)。他认为后者是这个时代最重要的问题之一。在关于气候变化的演讲里,Dean 讨论了 AI 怎样能够成为零碳产业的方法,以及使用 AI 帮助改变人类的行为。

谈到对 2020 年的期待,Dean 表示,他希望看到多模型学习领域的进展。在这一领域中,多模态学习依赖多媒体数据进行训练,而多任务学习则让网络通过训练一次就可以完成多项任务。

毫无疑问,2019 年最显著的机器学习趋势之一是:基于 Transformer 的自然语言模型的发展和壮大(上文中 Chintala 也认为这是 AI 领域近年来的最大突破之一)。在 2018 年,谷歌开源了基于 Transformer 的模型 BERT。而 2019 年大量顶级性能的模型(如谷歌的 XLNet、微软MT-DNN、Facebook 的 RoBERTa)都基于 Transformer 构建。而且,谷歌发言人还告诉 VentureBeat,XLNet 2 将于本月底发布。

Jeff Dean 在谈到 Transformer 进展时表示,「基于 Transformer 实际获得的机器学习模型可以执行比之前更复杂的 NLP 任务,从这个角度看,这个领域的研究硕果累累。」但是他补充道,该领域仍有发展空间。「我们还是希望能够使模型更多地理解语境。现在 BERT 等模型可以很好地处理数百个单词的语境,但如果语境包含 10000 个单词就不行了。这是一个有趣的研究方向。」

Dean 表示他希望社区更少去强调微小的 SOTA 进展,而是多关注如何创建更稳健的模型。

谷歌 AI 将推进新计划,如 2019 年 11 月开启的内部项目「Everyday Robot」,该项目旨在创造在家庭和工作环境中完成常见任务的机器人。

英伟达机器学习研究负责人 Anima Anandkumar

英伟达机器学习研究负责人 Anima Anandkumar

英伟达的 AI 研究围绕多个领域展开,从针对医疗领域的联邦学习到自动驾驶、超级计算机、显卡不一而足。

2019 年,在英伟达负责机器学习工作的 Anandkumar 的重点之一是强化学习模拟框架。目前这样的框架越来越流行,也更加成熟。

2019 年,我们看到英伟达开发了自动驾驶平台 Drive 和机器人模拟器 Isaac,以及基于模拟生成合成数据的模型和 GAN。

例如,去年 StyleGAN 和 GauGAN 等 AI 模型大出风头。而在上个月,英伟达还发布了 StyleGAN2。

这其中使用的便是 GAN 这一神经网络。这是一项能「混淆现实和虚拟界限」的技术,Anandkumar 认为该技术能够帮助解决 AI 社区面临的难题,如抓握式机器臂和自动驾驶。

Anandkumar 预测,2020 年迭代算法(iterative algorithm)、自监督和自训练方法将有新的进展。所谓自训练,指的是模型使用无监督数据,通过自我训练得到改进。

「我认为迭代算法就是未来,因为如果你只做一个前馈网络,它的稳健性可能是个问题。而如果你尝试进行多次迭代——基于数据类型或准确率要求来调试迭代,那么达到目标的可能性就会大大增加。」

Anandkumar 认为,2020 年 AI 社区将面临多项挑战,比如说,AI 社区需要和领域专家合作为特定行业创建模型。政策制定者、个人和 AI 社区还需要处理特征表示上的问题,并确保模型训练所用数据集能够代表不同群体。

「我认为人脸识别存在的问题是容易被发现的,但是,在很多领域中,人们还没有意识到数据的使用会涉及隐私问题。」Anandkumar 表示,人脸识别得到的关注最多,这是因为人们很容易理解人脸识别如何损害个人隐私,而 2020 年 AI 社区将面临更多伦理问题。

「我们需要更加审慎地审查数据收集和使用过程。欧洲正在这样做,但在美国更应该如此。出于正当理由,美国国家运输安全委员会(NTSB)和联邦公共交通管理局(FTA)等组织将更多地执行此类操作。」

Anandkumar』s 认为,2019 年的一大惊喜是文本生成模型的突飞猛进。

「2019 是语言模型之年,不是吗?现在,我们第一次得到了更连贯的文本生成结果,且其长度相当于整个段落,这在之前绝不可能,这非常棒。」

2019 年 8 月,英伟达发布了 Megatron 自然语言模型。该模型具备 80 亿参数,被认为是全球最大的 Transformer 模型。Anandkumar 表示,她被人们开始按模型是否具备人格或个性进行分类的方式震惊到了。她期待看到更加适用于特定行业的文本模型。

「我们仍然没有到达交互式对话生成阶段。在这个阶段中,我们可以追踪和进行自然对话。我认为 2020 年这一方向会有更多尝试。」

开发控制文本生成的框架比开发图像识别框架难度更大。而且文本生成模型会遇到为神经模型定义事实等方面的挑战。

IBM 研究主管 Dario Gil

IBM 研究主管 Dario Gil

Dario Gil 带领的研究者团队为白宫和全球企业提供积极指导。他认为,2019 年机器学习领域的重要进展包括生成模型语言模型的进步。

他预测,使用较低精度架构更高效地训练模型方面会有持续进展。开发更高效的 AI 模型是 NeurIPS 的重点,IBM Research 在会上介绍了使用 8-bit 精度模型的深度学习技术。

「总体上,使用现有硬件和 GPU 架构训练深度神经网络的方式仍然是低效的。因此,从根本上重新思考非常重要。我们已经提升了 AI 的计算效率,我们还将做得更多。」

Gil 引用研究表示,机器学习训练的需求每三个半月翻一番,比摩尔定律预测的要快得多。

Gil 对 AI 加速推动科学新发现感到很振奋,但他表示,IBM 研究院的研究重点将是神经符号方法。

2020 年,Gil 希望 AI 从业者和研究者能够关注准确率以外的度量指标,考虑在生产环境中部署模型的价值。AI 领域转向构建受信任的系统,而不是准确率至上,这将是 AI 得到继续采用的关键。

「社区中有些人可能会说『不要担心,只需要提高准确率。人们会习惯黑箱这件事的。』,或者他们认为人类有时做决策时也不给出解释啊。我认为将社区的智力聚焦于比准确率更好的事情是非常非常重要的。在任务关键型应用中,AI 系统不能是黑箱。」

AI 只有少数机器学习奇才能做,具备数据科学和软件工程技能的更多人只用使用它就行了。Gil 认为这种认知应该摒弃。

「如果我们让 AI 保持神秘,只有该领域的 PhD 才能研究,这对 AI 的应用没有好处。」

2020 年,Gil 对神经符号 AI 尤其感兴趣。IBM 将寻找神经符号方法为概率编程(让 AI 学习如何编程)和能够分享决策背后原因的模型等赋能。

「采用神经符号方法,能够将学习和推理结合起来,即符号维度嵌入到学习程序中。通过这种方式,我们已经证明可使用所需数据的一部分进行学习。因为你学习了程序,你的最终输出是可解释的,因为有了这些可解释的输出,系统就更加可信。」

公平性、数据完整性和数据集选择问题仍是关注的重点。同样,和生物识别技术相关的领域也是如此。人脸识别获得了巨大关注,这只是个开始。随着语音数据的敏感度上升,其他形式的生物识别特征也会日益受到关注。

「和人类身份和生物识别特征有关的工作,以及使用 AI 分析这些信息依然是研究中的核心问题。」

除了 MIT-IBM Watson 实验室的主要项目——神经符号和常识推理以外,Gil 表示 2020 年 IBM 研究院还将探索用于 AI 的量子计算,以及较低精度架构以外的 AI 模拟硬件。

总结

机器学习将继续塑造商业和社会,本文采访的这些研究者和专家发现了如下趋势:

  • 神经语言模型的进展是 2019 年的重大事件,Transformer 是其背后的巨大助力。2020 年会出现更多 BERT 变体和基于 Transformer 的模型。

  • AI 行业应该寻找准确率以外的模型输出度量指标。

  • 2020 年,半监督学习、神经符号等方法和多任务学习多模态学习等子领域可能出现进展。

  • 和生物识别数据(如语音记录)相关的伦理挑战可能继续成为争议焦点。

  • 编译器和量化等方法可能在 PyTorch 和 TensorFlow机器学习框架中更加流行,以作为优化模型性能的方式。

参考链接:

https://thenextweb.com/podium/2020/01/02/ai-creativity-will-bloom-in-2020-all-thanks-to-true-web-machine-learning/

入门Jeff Dean文本生成TransformerPyTorch
相关数据
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
Microsoft机构

微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

https://www.microsoft.com/en-us/about
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
陈天奇人物

陈天奇,华盛顿大学计算机系博士生,此前毕业于上海交通大学ACM班,研究方向为大规模机器学习。陈天奇曾获得KDD CUP 2012 Track 1第一名,并开发了SVDFeature,XGBoost,cxxnet等著名机器学习工具,是最大开源分布式机器学习项目DMLC的发起人之一。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

半监督学习技术

半监督学习属于无监督学习(没有任何标记的训练数据)和监督学习(完全标记的训练数据)之间。许多机器学习研究人员发现,将未标记数据与少量标记数据结合使用可以显着提高学习准确性。对于学习问题的标记数据的获取通常需要熟练的人类代理(例如转录音频片段)或物理实验(例如,确定蛋白质的3D结构或确定在特定位置处是否存在油)。因此与标签处理相关的成本可能使得完全标注的训练集不可行,而获取未标记的数据相对便宜。在这种情况下,半监督学习可能具有很大的实用价值。半监督学习对机器学习也是理论上的兴趣,也是人类学习的典范。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

多模态学习技术

现实世界中的信息通常以不同的模态出现。例如,图像通常与标签和文本解释联系在一起;文本包含图像以便更清楚地表达文章的主要思想。不同的模态由迥异的统计特性刻画。例如,图像通常表示为特征提取器的像素强度或输出,而文本则表示为离散的词向量。由于不同信息资源的统计特性不同,发现不同模态之间的关系是非常重要的。多模态学习是一个很好的模型,可以用来表示不同模态的联合表示。多模态学习模型也能在观察到的情况下填补缺失的模态。多模态学习模型中,每个模态对应结合了两个深度玻尔兹曼机(deep boltzmann machines).另外一个隐藏层被放置在两个玻尔兹曼机上层,以给出联合表示。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

多任务学习技术

神经语言模型技术

语言模型是估计单词序列的联合概率函数,比如给一个长度为m的单词序列,通过使用语言模型,可以获得这m个单词分布的概率P(W1,...,Wm)。对于许多的自然语言处理的应用,可以估计不同短语的概率是极具应用价值的。语言模型可以应用于语音识别,机器翻译,语音标记,解析,手写识别,信息检索等领域。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

联邦学习技术

如何在保护数据隐私、满足合法合规要求的前提下继续进行机器学习,这部分研究被称为「联邦学习」(Federated Learning)。

MT-DNN技术

MT-DNN 是微软提出的在多种自然语言理解任务上学习表征的多任务深度神经网络。与 BERT 模型类似,MT-DNN 分两个阶段进行训练:预训练和微调。与 BERT 不同的是,MT-DNN 在微调阶段使用多任务学习,在其模型架构中具有多个任务特定层。

量子计算技术

量子计算结合了过去半个世纪以来两个最大的技术变革:信息技术和量子力学。如果我们使用量子力学的规则替换二进制逻辑来计算,某些难以攻克的计算任务将得到解决。追求通用量子计算机的一个重要目标是确定当前经典计算机无法承载的最小复杂度的计算任务。该交叉点被称为「量子霸权」边界,是在通向更强大和有用的计算技术的关键一步。

常识推理技术

常识推理是人工智能(AI)的一个分支,它关注模拟人类每天遇到的普通情境的类型和本质的假设。这些假设包括对人和物体的物理特性,目的,意图和行为的判断,以及他们的行为和相互作用的可能结果。展示常识推理的设备将能够预测结果并得出类似于人类民间心理学(人类对人们的行为和意图进行推理的天生能力)和天真物理学(人类对物理世界的自然理解)的结论。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

对话生成技术

对话生成是能经由对话或文字进行交谈的计算机程序任务。能够模拟人类对话,通常以通过图灵测试为评估标准。

推荐文章
暂无评论
暂无评论~