Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

李泽南作者

腾讯战略投资,燧原科技首款AI训练芯片出炉:性能超越V100

腾讯领投、融资累计超过 6 亿元的 AI 芯片公司燧原科技,终于发布了自己的首款产品。

12 月 11 日,燧原科技在上海举办了成立以来的首场发布会,推出了完全自主研发的首款 AI 训练芯片「邃思 DTU」,以及搭载该芯片的 AI 加速卡云燧 T10。燧原科技的新产品,被认为是目前业内性能最为强大的 AI 训练芯片。

在发布会上,燧原科技创始人、CEO 赵立东展望了燧原投身 AI 芯片研发的愿景:「燧原科技希望能做大芯片、拼硬科技,对标世界最顶级的技术和公司。」

燧原科技 CEO 赵立东手持云燧 T10。

虽然人工智能的概念很早就已被提出,但从集成电路、半导体芯片的角度来看,AI 计算有着自己的特点,基于机器学习算法,硬件架构需要进行创新。

燧原希望在 AI 训练芯片这一高端市场上首先发力。目前在这一方向上,GPU 几乎处于垄断地位。今年 11 月,OpenAI 发布了最新 AI 算力报告,其中提出 AI 算力的需求每年提升 10 倍——即使在摩尔定律没有放缓的情况下,现有芯片也无法满足这样的需求。这意味着人工智能芯片需要新的架构,从而为芯片公司创造了机会。

最强量产 AI 训练芯片

邃思 DTU 被认为是目前最为强大的量产 AI 训练芯片,其采用格罗方德(GlobalFoundries)12nm FinFET 工艺打造,面积高达 480mm²,主芯片包含 141 亿个晶体管,同时还采用了先进的 2.5D 立体封装技术,进一步提高了芯片的信号传输速度和带宽。

燧原科技创始人兼 COO 张亚林展示邃思 DTU。

与之一同发布的首款人工智能训练卡「云燧 T10」,是一块面向云端数据中心的 AI 加速卡。它采用标准双槽位,率先支持 PCIe 4.0,功耗为 225W。其独特的 25GB 双向背板互联方案有别于业内常见的 InfiniBand 并联方式,能在相同的互联带宽下,较大幅度地降低组网的复杂度和成本。

燧原表示,T10 的单卡单精度(FP32)算力达到了 20TFLOPS,且支持单精度 FP32 和半精度 BF16 的混合精度计算。相比之下,英伟达最新的 Tesla V100S 的单精度算力为 16.4TFLOPS,而另一方面,云邃 T10 的功耗更低,这意味着它要比 V100 具有更高的效率。

云燧 T10 支持半精度 BF16 运算,并且达到了 80TFLOPS 的算力,这也让它成为了谷歌 TPU 以外,业界首款支持这种运算方式的 AI 加速卡。「这款芯片是燧原科技完全自主设计完成的,完全支持所有已有的、及未来即将出现的 AI 算法。」燧原科技创始人兼 COO 张亚林说道。

在发布会上,燧原科技表示 T10 已经实现量产,并将于 2020 年第一季度上市。

与目前很多初创公司发布的 AI 芯片相比,基于数据中心的人工智能训练芯片相比推理芯片难度更高,通常要求芯片具有高算力、低功耗、强互联等特性,并支持多种训练算法,以满足通用性和能耗的要求。邃思芯片基于可重构芯片的设计理念,其计算核心包含 32 个通用可扩展神经元处理器(SIP),每 8 个 SIP 组合成 4 个可扩展智能计算群(SIC)。SIC 之间通过 HBM 实现高速互联,通过片上调度算法,数据在迁移中完成计算,实现了 SIP 利用率最大化。

在 AI 芯片的大规模应用中,并联效率至关重要,燧原在发布会上特别介绍了芯片中使用的高速互联技术。为实现大规模训练集群的高效训练,燧原科技提出了 200GB 双向 ESL 互联技术,大幅降低了系统复杂度和成本。

在发布会上,燧原还介绍了云燧 T10 的扩展效率:在并联多达 1024 张卡时,燧原的板卡仍可以达到超过 70% 的效率(理论最高可以达的效率为 86%)。

8 卡互联的云邃 T10 服务器(左),以及基于云邃 T11 的服务器(右)。

除此以外,燧原还计划推出基于 OCP 加速模组(OAM)的「云燧 T11」。它是 T10 的更强大版本,功耗 300W,将于明年 5-6 月正式推出,直接对标 Tesla V100 的 NVLink 版。

模型迁移零成本

在硬件之外,燧原同时发布了计算及编程平台「驭算」,支持主流深度学习框架,提供完整的编译、调试、调优工具链,并在硬件层开放 SDK,为深度开发者提供细粒度算力编程接口。针对大规模模型集群训练,如目前流行的 BERT 等,提供分布式调度系统,并针对 ESL 并联进行优化。

「我们的软件平台支持 C/C++语言算子编程。可向开发者针对特定场景提供算子级、指令级优化。在未来,我们还会开放更为底层的硬件驱动。」张亚林表示。

目前,燧原的编程平台已经完全支持 TensorFlow,公司还计划在明年上半年对 PyTorch、MXNet、ONNX 等主流深度学习框架提供支持。在软件方面,燧原希望做到对开发者来说「迁移零成本」。

接受腾讯战略投资

燧原科技成立于 2018 年 3 月,这家公司已在上海和北京设立了研发中心,公司创始人赵立东、张亚林等人此前均任职于 AMD。目前这家公司已有 207 名员工。

迄今为止,燧原科技已经历了三轮融资,其中去年 8 月 7 日由腾讯领投的 Pre A 轮最为引人关注,其时融资额高达 3.4 亿元,也让燧原成为了首家和唯一一家被腾讯战略投资的国内 AI 芯片初创公司。今年 6 月,燧原科技又获得了 3 亿元人民币的 A 轮融资,红点中国领投,海松资本、云和资本、腾讯投资、阳光融汇资本、信中利资本跟投。

「我们选择接受来自腾讯的战略投资,是因为腾讯在数据、业务场景、算法团队等方面具备优势,」赵立东在发布会上表示。「为了实现业务落地零的突破,我们必须寻求合作,只有这样才能让落地的第一步走成功。」

相比打造出成型芯片再寻找客户,燧原科技与腾讯展开全面合作的行动减少了数个月的研发时间。

腾讯提出的『产品热启动』概念与我们不谋而合。在邃思芯片落地的过程中,我们与腾讯的开发者们进行了技术交流,这使得我们可以在软件优化过程中有的放矢了解需求和改进。」赵立东说道。

强大完整的团队,加上高效的合作,让燧原科技的第一款芯片就超越了当前业界主流产品的性能,创造了研发到量产仅用 20 个月的新纪录:

邃思芯片于 2018 年 4 月开始研发,内部代号狮子座,在今年 5 月 30 日流片成功。到 9 月 19 日,8 颗芯片全部点亮,完成实验室测试,开始软硬件联调。所有时间节点全部在最初计划的范围之内。

下一阶段,燧原将面向几大业务领域推广自己的产品:

  • 云服务公司(包括公有云、私有云、混合云)

  • 各传统领域的行业服务公司(金融、保险、医疗、交通等)

  • AI 超算中心和智慧城市

「目前燧原科技已与腾讯针对通用人工智能应用场景的项目开展密切的合作,未来也将会扩展到更多 AI 应用场景,」赵立东表示。「以此次发布的新产品作为开端,燧原将提供更多具有高性价比、高能效比、开源开放的完整解决方案,也可以针对不同应用场景的差异化需求提供软硬件定制化的支持和服务。」

燧原的芯片发布引起了各界关注,清华大学微电子所所长魏少军在发布会上表示:「燧原芯片研发迈出第一步的成功,要归功于团队的完整性,足够强大的实力,以及时机和方法的正确。中国今天的集成电路领域热度很高,但要发展集成电路需要足够的基础条件。邃思 DTU 是近年来能够在全球引起高度关注的芯片。」

随着训练芯片的量产,燧原科技下一步研发计划也已经浮出水面。这家公司计划在未来推出自己的推断芯片系列,构建云端 AI 模型训练和推理计算的完整解决方案。

产业燧原科技腾讯AI芯片硬件
相关数据
魏少军人物

曾任电信科学技术研究院副总工程师,大唐电信科技股份有限公司总裁。现任清华大学教授,博士生导师;教育部“211工程”电子系统集成与专用集成电路技术研究中心主任;中国电子学会高级会员,IEEE有价值会员。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

MXNet技术

MXNet是开源的,用来训练部署深层神经网络的深度学习框架。它是可扩展的,允许快速模型训练,并灵活支持多种语言(C ++,Python,Julia,Matlab,JavaScript, Go,R,Scala,Perl,Wolfram语言)

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

腾讯机构

腾讯,1998年11月诞生于中国深圳,是一家以互联网为基础的科技与文化公司。我们的使命是“通过互联网服务提升人类生活品质”。腾讯秉承着 “一切以用户价值为依归”的经营理念,为亿万网民提供优质的互联网综合服务。 腾讯的战略目标是“连接一切”,我们长期致力于社交平台与数字内容两大核心业务:一方面通过微信与QQ等社交平台,实现人与人、服务及设备的智慧连接;另一方面为数以亿计的用户提供优质的新闻、视频、游戏、音乐、文学、动漫、影业等数字内容产品及相关服务。我们还积极推动金融科技的发展,通过普及移动支付等技术能力,为智慧交通、智慧零售、智慧城市等领域提供有力支持。

http://www.tencent.com/
相关技术
通用人工智能技术

通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。

5G技术

第五代移动通信系统(5th generation mobile networks),简称5G,是4G系统后的延伸。美国时间2018年6月13日,圣地牙哥3GPP会议订下第一个国际5G标准。由于物理波段的限制,5G 的网络也将会与其他通信技术并用,包含长距离的其他传统电信波段。

推荐文章
暂无评论
暂无评论~