Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

魔王编译

透过现象看本质,图解支持向量机

作者说:我以前一直没有真正理解支持向量机,直到我画了一张图。

1. 问题

支持向量机(SVM)旨在解决「分类」问题。数据通常包含一定数量的条目/行/点。现在,我们想对每个数据点进行分类。为简单起见,我们假设两个类别:「正类」和「负类」。这或许可以帮助解答以下问题:

  • 基于图像的像素数据,判断这张图像中是否有猫(有猫则标签为正类);

  • 基于邮件的主题、发送者、文本等,判断该邮件是否为垃圾邮件;

  • 判断某个病人是否患有某种疾病。

其精髓在于,当我们知道正确答案时,我们会想到一些将数据分为两类的规则(对于支持向量机而言,「规则」是画一个平面,一侧的所有点均为「正」,另一侧的所有点均为「负」)。当我们遇到不知道类别的新数据点时,我们使用规则对其进行分类。分类问题严重依赖约束优化,同时也是约束优化的一个直观示例。大家可以参考以下博客或吴恩达的文章。

  • 博客地址:https://towardsdatascience.com/lagrange-multipliers-with-pictures-and-code-ace8018dac5e

  • 吴恩达文章地址:http://cs229.stanford.edu/notes/cs229-notes3.pdf

1.1 图解

我以前一直没有真正理解支持向量机,直到我画了一张图。

我们可以看到特征空间中有一些点。为方便可视化,我们使用一个可在屏幕上观看的 2D 特征空间。该空间中散落着一些数据点,每个点具备二元标签((1/-1)。如下图所示,我们将绿色点看作正类,红色点看作负类,黄色点类别未知。如果让你猜测黄色点的标签,你会怎么选?你可能会发现其中一些点并不是那么容易确认类别。

图 1:2-D 分类问题绿色点是正类,红色点是负类。你可以猜出黄色点的标签吗?(绘图工具:https://github.com/ryu577/pyray)

现在,如果我画一条紫色线将两个类别分割开,那么黄色点属于哪个类别就清晰多了(紫色线上方是绿色点,下方是红色点)。

图 2:画一条线,作为将正类标签和负类标签分割开来的「规则」。现在,我们可以使用该规则标注每个黄色点的类别。

然而,这条线并非唯一。有很多条紫色线可以将绿色点和红色点完美分割(见下图)。随着下图中紫色线的移动,某些黄色点就显得很微妙了(它们处于紫色线的不同侧,因此它们的类别取决于你选择使用哪条紫色线)。

图 3:将红色点和绿色点完美分割的线有很多条。那么我们应该选择哪一条呢?

问题在于,所有候选线中,哪一条是「最优」的?有一点很清楚:当上图中的紫色线接近右下角的红色点(critical point)时,其泛化效果不好,而当它远离那个点时,其分割效果要好得多。因此,这个红色点可以说明紫色线的分类效果,因此它是「关键点」。我们可以说,远离该红色点的线同样远离所有训练样本,而靠近该红色点的线最终的分类效果并不好。因此,离最近的训练样本较远的线才是优秀的分类器。

接下来,我们来看如何利用数学知识绘制分割线。

2. 绘制分割线

现在我们要(在 2D 空间中)画一条分割线(在更高维度的空间中,则为分割面)。那么这条线是什么呢?它是具备某种共性的点的无限集合。这些点满足一个特定公式。为了找到这个公式,我们先从最简单的线 x 轴开始。x 轴上所有点的位置向量存在什么共性?v_x = [x,0],即它们对应的 y 坐标均为 0。

也就是说,x 轴上每个点的位置向量与指向 y 轴方向的向量是正交(垂直)的。

这个说法可能看起来比较晦涩难懂,但是我们必须这么说,因为这种现象其实对所有线都成立,而并非只适用于 x 轴。我们希望将此说法泛化至任意线。现在每次挪动一小步,我们来看看穿过原点的线(如 x 轴)。如下图所示,只需将 x 轴旋转一定角度,就可以得到这些线。

图 4:旋转 x 轴可以得到穿过原点的任意线。这些线上的每个点都与橙色向量相垂直。

随着线的变化,与线相垂直的向量也在变化,但是所有线上每个点的位置向量都与某个向量垂直。我们把这个与线垂直的向量叫做 w。当我们改变 w 时,就可以捕捉到所有此类线。

注意,对于任意给定线而言,存在多个 w 值。如果我们将向量 w 扩展或缩小一定数值,该线上每个点的位置向量仍与向量 w 垂直。

图 5:扩大或缩小正交 w 向量。

为什么不把 w 向量限制在大小为 1 呢?下文中,我们将 w 向量的大小设为 1。

现在我们已经将穿过原点的所有线都参数化了。那么那些没有穿过原点的线呢?我们将穿过原点的线移动一定量,即在该线法向量 w 的方向上移动 b。现在,w 与该线上每个点的位置向量的点积不为零,而是常量 b(参见下图)。w 向量是从原点指向紫色线的单位向量,且与紫色线垂直。A 即紫色线上与原点最接近的点。假设 OA 的距离是 -b。现在,考虑两个随机点 B 和 C(分别是图中绿色点和橙色点)。将 OB 或 OC 与单位向量 w 相乘,分别得到三角形 OAB 和 OAC 的底。

在这两种情况中,OA 为 -b。由于这两个点只是紫色线上的任意点,我们可以推断出,紫色线上的所有点均满足 w^T x+b=0(其中 x 表示紫色线上点的位置向量)。

图 6:未穿过原点的线。

如果我们将不在该线上的点应用于上述公式呢?得到的结果不是零,而是从该点到紫色线的垂直距离(对于紫色线上的点而言也是如此,所以它们所对应的公式结果为零)。我们需要注意:这个结论仅适用于 |w|=1 的情况。下图清晰说明了这一结果。B 为不属于紫色线的任意点,B』』 为从 B 到紫色线的垂点,B』 为从 B 到 w 向量的垂点。从 B 到紫色线的垂直距离为 BB』』。但是由于 A-B』-B-B』』 是一个矩形,因此该垂直距离等于 AB』=OB』-OA。现在,OB』 是 B 的位置向量与 w 的点积。因此,如果 x 是 B 的位置向量,则 |OB』| = w^T x。这意味着 |AB』|=w^T x-(-b)(OA=-b)。因此从点 B 到紫色线的距离是:|AB』|=w^T x+b(该公式恰好是紫色线的公式)。

图 7:将不在紫色线上的点应用于紫色线公式会发生什么?我们得到该点与紫色线之间的垂直距离。

注意,在 w 指向方向一侧的所有点(如图 7 中的点 B)到紫色线的垂直距离为正值,而另一侧点的垂直距离为负值。

在 w 指向方向一侧的所有点均得到正类标签 (t_i=1),而另一侧的所有点均得到负类标签 (t_i=-1)。因此,如果我们将这些标签与垂直距离相乘,则所有点调整后的垂直距离均为正,前提是这些点均被紫色线正确分类(即具备正类标签的点在线一侧,具备负类标签的点在另一侧)。

3. 最佳分割线

现在到了 SVM 的重点了。我们将任意点到分割线的调整后垂直距离叫做「间距」(margin)。那么,对于任意给定分割线,所有点均具备间距(如果点被分割线正确分类,则间距为正,反之则间距为负)。我们想获取将正类和负类完美分割的线。也就是说,间距越大越好,即使是对于邻近界限(分割平面)的点。

那么,最大化所有间距(甚至是最接近分割线的点的间距)的分割平面应该能够很好地分割这些点。现在,给出 (w,b),第 i 个点的间距为:

间距公式。

其中 x_i 表示特征空间中的位置向量,t_i 表示标签:1 为正类,-1 为负类。

所有点中的最小间距为:

公式 1:所有点中的最小间距。

我们想让 (w,b) 最大化上述最小间距。也就是:

即我们想让 (w,b) 满足 |w|=1,且最大化间距:

公式 2:SVM 目标函数

注意:如果这条线没有分离数据,那么对于 (w,b),某些点的间距

间距公式。

为负。且这些点中的其中一个会在第一次最小化中「脱颖而出」,这意味着 (w,b) 无法在第二次 arg max 时胜出。因此,该公式保证了胜出的 (w,b) 能够分割数据。

公式 2 是一个优化问题,涉及最小化和最大化(mini-max)。解决一级优化总比二级优化要简单。因此,我们尝试将公式 2 转化为约束优化问题。

我们用 γ 表示所有点的最小间距。

公式 3:约束。

最终得到的优化问题为:

公式 4:SVM 优化问题。

上述优化问题具备二次/线性约束和线性目标函数。我们可以使用二次规划求解器(quadratic programming solver)和最优分割线/平面 (w,b) 解决该问题。

现在,我们来试着进一步简化该问题。我们发现可以去除 γ。其代价是,我们必须放弃 w^T w = 1 这一要求。但这是值得的。我们使用 γ 将约束分割为两部分,得到:

公式 5:使用 γ 分割分割平面公式。

现在,使

引入新的 w 变量。

为两侧取绝对值:

取绝对值。

我们之前要求 |w|=1。这意味着:

因此,公式 3 变成了:

公式 5 和公式 6 使公式 4 中的优化问题变成了:

现在,优化问题有了一个丑陋的目标函数。但是最大化 1/|w| 等同于最小化 |w|,等同于最小化 |w|²。添加 1/2 使得计算更加简单。

因此,上述优化问题变为:

公式 7

现在,该优化问题具备二次目标函数和线性约束(线性约束二次规划,LCQP)。使用二次规划求解器即可解决该问题。

现在,我们知道如何通过解决优化问题找出最优分割线了。透过表面查看解决这类优化问题的真正机制,会帮助我们对该问题了解更多,具备更强大的洞察和见解。

入门支持向量机SVM
61
相关数据
吴恩达人物

斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund。

所属机构
参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

二次规划技术

二次规划(Quadratic programming),在运筹学当中,是一种特殊类型的最佳化问题。

支持向量机技术

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

推荐文章
作者您好,我是数智泉公众号的编辑,请问可以转发这篇文章到我们公众号吗?