Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

韩旭、高天宇、刘知远作者知乎 NLP日知录来源文婧编辑

知识图谱从哪里来:实体关系抽取的现状与未来

本文作者总结了对实体关系抽取现状、挑战和未来发展方向的认识。

最近几年深度学习引发的人工智能浪潮席卷全球,在互联网普及带来的海量数据资源和摩尔定律支配下飞速提升的算力资源双重加持下,深度学习深入影响了自然语言处理的各个方向,极大推动了自然语言处理的发展。来到2019年的今天,深度学习的诸多局限性也慢慢得到广泛认知。对于自然语言处理而言,要做到精细深度的语义理解,单纯依靠数据标注与算力投入无法解决本质问题。如果没有先验知识的支持,“中国的乒乓球谁都打不过”与“中国的足球谁都打不过”,在计算机看来语义上并没有巨大差异,而实际上两句中的“打不过”意思正好相反。因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。

知识图谱

现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。这样,美国作家马克·吐温的相关知识就以结构化的形式记录下来。

目前,这些结构化的知识已被广泛应用于搜索引擎、问答系统自然语言处理应用中。但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。

具体来说,给定一个句子和其中出现的实体,实体关系抽取模型需要根据句子语义信息推测实体间的关系。例如,给定句子:“清华大学坐落于北京近邻”以及实体“清华大学”与“北京”,模型可以通过语义得到“位于”的关系,并最终抽取出(清华大学,位于,北京)的知识三元组。

实体关系抽取是一个经典任务,在过去的20多年里都有持续研究开展,特征工程、核方法、图模型曾被广泛应用其中,取得了一些阶段性的成果。随着深度学习时代来临,神经网络模型则为实体关系抽取带来了新的突破。

神经网络关系抽取模型

面向自然语言文本序列已经有很多神经网络类型,例如循环神经网络(RNN、LSTM)、卷积神经网络(CNN)和Transformer等,这些模型都可以通过适当改造用于关系抽取。最初,工作 [1,2] 首次提出使用CNN对句子语义进行编码,用于关系分类,比非神经网络方法比性能显著提升;工作 [3,4] 将RNN与LSTM用于关系抽取;此外,工作 [5] 提出采用递归的神经网络对句子的语法分析树建模,试图在提取语义特征的同时考虑句子的词法和句法特征,这个想法也被不少后续工作的进一步探索。这里,我们列出一个表格,总结各类典型神经网络基准测试数据集合SemEval-2010 Task-8 [6] 上的效果。

从上表可以看出,这些神经网络模型均取得了优异的实验结果,且相互之间没有显著的性能差异。这是否意味着关系抽取问题就此解决了呢?实际上并非如此。SemEval-2010 Task-8的任务设定为,对预先定义好的关系类别标注大量的训练和测试样例,样例都是相对简单的短句,而且每种关系的样例分布也比较均匀。然而,实际应用中往往面临很多挑战:

  • 数据规模问题:人工精准地标注句子级别的数据代价十分高昂,需要耗费大量的时间和人力。在实际场景中,面向数以千计的关系、数以千万计的实体对、以及数以亿计的句子,依靠人工标注训练数据几乎是不可能完成的任务。
  • 学习能力问题:在实际情况下,实体间关系和实体对的出现频率往往服从长尾分布,存在大量的样例较少的关系或实体对。神经网络模型的效果需要依赖大规模标注数据来保证,存在”举十反一“的问题。如何提高深度模型的学习能力,实现”举一反三“,是关系抽取需要解决的问题。
  • 复杂语境问题:现有模型主要从单个句子中抽取实体间关系,要求句子必须同时包含两个实体。实际上,大量的实体间关系往往表现在一篇文档的多个句子中,甚至在多个文档中。如何在更复杂的语境下进行关系抽取,也是关系抽取面临的问题。
  • 开放关系问题:现有任务设定一般假设有预先定义好的封闭关系集合,将任务转换为关系分类问题。这样的话,文本中蕴含的实体间的新型关系无法被有效获取。如何利用深度学习模型自动发现实体间的新型关系,实现开放关系抽取,仍然是一个”开放“问题。

所以说,SemEval-2010 Task-8这样的理想设定与实际场景存在巨大鸿沟,仅依靠神经网络提取单句语义特征,难以应对关系抽取的各种复杂需求和挑战。我们亟需探索更新颖的关系抽取框架,获取更大规模的训练数据,具备更高效的学习能力,善于理解复杂的文档级语境信息,并能方便地扩展至开放关系抽取。

我们认为,这四个方面构成了实体关系抽取需要进一步探索的主要方向。接下来,我们分别介绍这四个方面的发展现状和挑战,以及我们的一些思考和努力。

更大规模的训练数据

神经网络关系抽取需要大量的训练数据,但是人工标注这些训练数据非常费时昂贵。为了自动获取更多的训练数据训练模型,工作 [16] 提出了远程监督(Distant Supervision)的思想,将纯文本与现有知识图谱进行对齐,能够自动标注大规模训练数据。

远程监督的思想并不复杂,具体来说:如果两个实体在知识图谱中被标记为某个关系,那么我们就认为同时包含这两个实体的所有句子也在表达这种关系。再以(清华大学,位于,北京)为例,我们会把同时包含“清华大学”和“北京”两个实体的所有句子,都视为“位于”这个关系的训练样例。

远程监督的这种启发式标注规则是把双刃剑,它是自动标注训练数据的有效策略,但其过强的设定不可避免地产生错误标注。例如对于知识图谱中(清华大学,校长,邱勇)这个三元组事实,句子“邱勇担任清华大学校长”可以反映“清华大学”与“邱勇”之间“校长”的关系;但是句子“邱勇考入清华大学化学与化学工程系”以及“邱勇担任清华大学党委常委”并不表达“校长”关系,但却会被远程监督的启发式规则错误地标注为“校长”关系的训练实例。

虽然远程监督思想非常简单也存在很多问题,不过它为更多收集训练数据开启了新的纪元。受到这个思路的启发,很多学者积极考虑如何尽可能排除远程监督数据中的噪音标注的干扰。从2015年开始,基于远程监督与降噪机制的神经关系抽取模型得到了长足的发展,工作 [17] 引入了多实例学习方法,利用包含同一实体对的所有实例来共同预测实体间关系。我们课题组林衍凯等人工作 [19] 提出句子级别注意力机制,对不同的实例赋予不同的权重,用以降低噪音实例造成的影响。工作 [20] 引入对抗训练来提升模型对噪音数据的抵抗能力。工作 [21] 则构建了一套强化学习机制来筛除噪音数据,并利用剩余的数据来训练模型。

总结来说,已有对远程监督的降噪方法可以兼顾了关系抽取的鲁棒性与有效性,也具有较强的可操作性和实用性。不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。不完善的知识图谱对齐所得到的文本训练数据也将是不完善的,对那些长尾知识而言,仍难以通过这种远程监督机制来得到训练实例。如何提出更有效的机制来高效获取高质量、高覆盖、高平衡的训练数据,仍然是一个值得深入思考的问题。

更高效的学习能力

即使通过远程监督等办法能够自动获取高质量的训练数据,由于真实场景中关系和实体对的长尾分布特点,绝大部分的关系和实体对的可用样例仍然较少。而且,对于医疗、金融等专业领域的专门关系,受限于数据规模的问题可用样例也很有限。而神经网络模型作为典型的data-hungry技术,在训练样例过少时性能会受到极大影响。因此,研究者们希望探索有效提升模型学习能力的方法,以更好地利用有限训练样例取得满意的抽取性能。

实际上,人类可以通过少量样本快速学习知识,具有“举一反三”的能力。为了探索深度学习机器学习“举一反三”的能力,提出了少次学习(Few-shot learning)任务。通过设计少次学习机制,模型能够利用从过往数据中学到的泛化知识,结合新类型数据的少量训练样本,实现快速迁移学习,具有一定的举一反三能力。

过去少次学习研究主要集中于计算机视觉领域,自然语言处理领域还少有探索。我们课题组韩旭同学等的工作 [21] 首次将少次学习引入到关系抽取,构建了少次关系抽取数据集FewRel,希望推动驱动自然语言处理特别是关系抽取任务的少次学习研究。如下图所示,关系抽取少次学习问题仅为每种关系提供极少量样例(如3-5个),要求尽可能提高测试样例上的关系分类效果。

FewRel论文工作初步尝试了几个代表性少次学习方法包括度量学习(Metric learning)、元学习(Meta learning)、参数预测(Parameter prediction)等,评测表明即使是效果最佳的原型网络(Prototypical Networks)模型,在少次关系抽取上的性能仍与人类表现相去甚远。

为了更好解决远程监督关系抽取的少次学习问题,我们课题组的高天宇同学等的工作 [22] 提出了基于混合注意力机制的原型网络,同时考虑实例级别和特征级别的注意力机制,在减少噪音标注影响的同时,能更好地关注到句中的有用特征,实现高效少次学习。工作 [24] 则提出多级匹配和整合结构,充分学习训练样例之间的潜在关联,尽可能挖掘为数不多的样例中的潜在信息。工作 [24] 则采用了预训练语言模型BERT来处理关系抽取中的少次学习问题,基于海量无监督数据训练的BERT,能够为少次学习模型提供有效的语义特征,在FewRel数据上取得了超过人类关系分类的水平。

在对少次学习关系抽取探究的过程中,课题组的高天宇同学等进一步发现两个长期被忽视的方面 [25]:要将少次学习模型用于生产环境中,应具备从资源丰富领域迁移到资源匮乏领域(low-resource domains)的能力,同时还应具备检测句子是否真的在表达某种预定义关系或者没有表达任何关系的能力。为此他们提出了FewRel 2.0,在原版数据集FewRel的基础上增加了以下两大挑战:领域迁移(domain adaptation)和“以上都不是”检测(none-of-the-above detection)。

对于领域迁移挑战,FewlRel 2.0 采集了大量医疗领域的数据并进行标注,要求关系抽取模型在原语料进行训练后,还可以在这些新领域语料上进行少次学习。对于“以上都不是”检测,FewRel 2.0 在原N-way K-shot设定(给定N个新类型,每个类型给定K个训练样本)上,添加了一个“以上都不是”选项,大大增加了分类和检测难度。

初步实验发现,以往有效的模型(包括基于BERT的模型)在这两大挑战任务均有显著性能下降。尽管高天宇同学等在FewRel 2.0论文中也尝试了一些可能的解决思路:例如对于领域迁移尝试了经典的对抗学习方法,模型性能得到了一定的提升;对于“以上都不是”检测,提出了基于BERT next sentence prediction task的BERT-PAIR模型,可以在”以上都不是”挑战取得一点效果。但这两大挑战依然需要更多创新探索。

总结来说,探索少次学习关系抽取,让关系抽取模型具备更强大高效的学习能力,还是一个非常新兴的研究方向,特别是面向关系抽取的少次学习问题,与其他领域的少次学习问题相比,具有自身独有的特点与挑战。不论是基于已有少次学习技术作出适于NLP和关系抽取的改进,还是提出全新的适用于关系抽取的少次学习模型,都将最大化地利用少量标注数据,推动关系抽取技术的落地实用。

更复杂的文本语境

现有关系抽取工作主要聚焦于句子级关系抽取,即根据句内信息进行关系抽取,各类神经网络模型也擅长编码句子级语义信息,在很多公开评测数据能够取得最佳效果。而在实际场景中,大量的实体间关系是通过多个句子表达的。如下图所示,文本中提到多个实体,并表现出复杂的相互关联。根据从维基百科采样的人工标注数据的统计表明,至少40%的实体关系事实只能从多个句子中联合获取。为了实现多个实体间的跨句关系抽取,需要对文档中的多个句子进行阅读推理,这显然超出了句子级关系抽取方法的能力范围。因此,进行文档级关系抽取势在必行。

文档级关系抽取研究需要大规模人工标注数据集来进行训练和评测。目前文档级关系抽取数据集还很少。工作 [26,27] 构建了两个远程监督的数据集,由于没有进行人工标注因此评测结果不太可靠。BC5CDR [28] 是人工标注的文档级关系抽取数据集,由1,500篇PubMed文档构成是生物医学特定领域,且仅考虑“化学诱导的疾病”关系,不一定适合用来探索文档级关系抽取的通用方法。工作 [29] 提出使用阅读理解技术回答问题的方式从文档中提取实体关系事实,这些问题从”实体-关系“对转换而来。由于该工作数据集是针对这种方法量身定制的,也不那么适用于探索文档级关系抽取的通用方法。这些数据集或者仅具有少量人工标注的关系和实体,或者存在来自远程监督噪音标注,或者服务于特定领域或方法,有这样或那样的限制。

为了推动文档级关系抽取的研究,课题组姚远同学等 [30] 提出了DocRED数据集,是一个大规模的人工标注的文档级关系抽取数据集,基于维基百科正文和WikiData知识图谱构建而成,包含5,053篇维基百科文档,132,375 个实体和53,554 个实体关系事实,是现有最大的人工标注的文档级关系抽取数据集。如下图所示,文档级关系抽取任务要求模型具有强大的模式识别逻辑推理、指代推理和常识推理能力,这些方面都亟待更多长期的研究探索。

更开放的关系类型

现有关系抽取工作一般假设有预先定义好的封闭关系集合,将任务转换为关系分类问题。然而在开放域的真实关系抽取场景中,文本中包含大量开放的实体关系,关系种类繁多,而且关系数量也会不断增长,远超过人为定义的关系种类数量。在这种情况下,传统关系分类模型无法有效获取文本中蕴含的实体间的新型关系。如何利用深度学习模型自动发现实体间的新型关系,实现开放关系抽取,仍然是一个”开放“问题。

为了实现面向开放领域的开放关系抽取,研究提出开放关系抽取(Open Relation Extraction,OpenRE)任务,致力于从开放文本抽取实体间的任意关系事实。开放关系抽取涉及三方面的“开放”:首先是抽取关系种类的开放,与传统关系抽取不同,它希望抽取所有已知和未知的关系;其次是测试语料的开放,例如新闻、医疗等不同领域,其文本各有不同特点,需要探索跨域鲁棒的算法;第三是训练语料的开放,为了获得尽可能好的开放关系抽取模型,有必要充分利用现有各类标注数据,包括精标注、远程监督标注数据等,而且不同训练数据集的关系定义和分布也有所不同,需要同时利用好多源数据。

在前深度学习时代,研究者也有探索开放信息抽取(Open Information Extraction,OpenIE)任务。开放关系抽取可以看做OpenIE的特例。当时OpenIE主要通过无监督的统计学习方法实现,如Snowball算法等。虽然这些算法对于不同数据有较好的鲁棒性,但精度往往较低,距离实用落地仍然相距甚远。

最近,课题组吴睿东同学等的工作 [31] 提出了一种有监督的开放关系抽取框架,可以通过”关系孪生网络“(Relation Siamese Network,RSN)实现有监督和弱监督模式的自由切换,从而能够同时利用预定义关系的有监督数据和开放文本中新关系的无监督数据,来共同学习不同关系事实的语义相似度。具体来说,关系孪生网络RSN采用孪生网络结构,从预定义关系的标注数据中学习关系样本的深度语义特征和相互间的语义相似度,可用于计算包含开放关系文本的语义相似度。而且,RSN还使用了条件熵最小化和虚拟对抗训练两种半监督学习方法进一步利用无标注的开放关系文本数据,进一步提高开放关系抽取的稳定性和泛化能力。基于RSN计算的开放关系相似度计算结果,模型可以在开放域对文本关系进行聚类,从而归纳出新型关系。

课题组高天宇同学等人工作 [32] 则从另一个角度出发,对于开放域的特定新型关系,只需要提供少量精确的实例作为种子,就可以利用预训练的关系孪生网络进行滚雪球(Neural SnowBall),从大量无标注文本中归纳出该新型关系的更多实例,不断迭代训练出适用于新型关系的关系抽取模型。

总结来说,开放域关系抽取在前深度学习时代取得了一些成效,但如何在深度学习时代与神经网络模型优势相结合,有力拓展神经网络关系抽取模型的泛化能力,值得更多深入探索。

总结

为了更及时地扩展知识图谱,自动从海量数据中获取新的世界知识已成为必由之路。以实体关系抽取为代表的知识获取技术已经取得了一些成果,特别是近年来深度学习模型极大地推动了关系抽取的发展。但是,与实际场景的关系抽取复杂挑战的需求相比,现有技术仍有较大的局限性。我们亟需从实际场景需求出发,解决训练数据获取、少次学习能力、复杂文本语境、开放关系建模等挑战问题,建立有效而鲁棒的关系抽取系统,这也是实体关系抽取任务需要继续努力的方向。

我们课题组从2016年开始耕耘实体关系抽取任务,先后有林衍凯、韩旭、姚远、曾文远、张正彦、朱昊、于鹏飞、于志竟成、高天宇、王晓智、吴睿东等同学在多方面开展了研究工作。去年在韩旭和高天宇等同学的努力下,发布了OpenNRE工具包 [33],经过近两年来的不断改进,涵盖有监督关系抽取、远程监督关系抽取、少次学习关系抽取和文档级关系抽取等丰富场景。此外,也花费大量科研经费标注了FewRel (1.0和2.0)和DocRED等数据集,旨在推动相关方向的研究。

本文总结了我们对实体关系抽取现状、挑战和未来发展方向的认识,以及我们在这些方面做出的努力,希望能够引起大家的兴趣,对大家有些帮助。期待更多学者和同学加入到这个领域研究中来。当然,本文没有提及一个重要挑战,即以事件抽取为代表的复杂结构的知识获取,未来有机会我们再专文探讨。

限于个人水平,难免有偏颇舛误之处,还请大家在评论中不吝指出,我们努力改进。需要说明的是,我们没想把这篇文章写成严谨的学术论文,所以没有面面俱到把每个方向的所有工作都介绍清楚,如有重要遗漏,还请批评指正。

作者简介:

韩旭,清华大学计算机科学与技术系博士三年级同学,主要研究方向为自然语言处理知识图谱信息抽取。在人工智能领域国际著名会议AAAI、ACL、EMNLP、COLING、NAACL上发表多篇论文,是OpenKE、OpenNRE等开源项目的开发者之一。

主页:https://thucsthanxu13.github.io

高天宇,清华大学计算机系大四本科生,主要研究方向为自然语言处理知识图谱、关系抽取。在人工智能领域国际著名会议AAAI、EMNLP上发表多篇论文,是OpenNRE等开源项目的主要开发者之一。

主页:https://gaotianyu.xyz/about/

刘知远,清华大学计算机系副教授、博士生导师。主要研究方向为表示学习、知识图谱和社会计算。

主页:http://nlp.csai.tsinghua.edu.cn/~lzy/

参考文献

[1] ChunYang Liu, WenBo Sun, WenHan Chao, Wanxiang Che. Convolution Neural Network for Relation Extraction. The 9th International Conference on Advanced Data Mining and Applications (ADMA 2013).

[2] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao. Relation Classification via Convolutional Deep Neural Network. The 25th International Conference on Computational Linguistics (COLING 2014).

[3] Dongxu Zhang, Dong Wang. Relation Classification via Recurrent Neural Network. arXiv preprint arXiv:1508.01006 (2015).

[4] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, Bo Xu. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. The 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

[5] Richard Socher, Brody Huval, Christopher D. Manning, Andrew Y. Ng. Semantic Compositionality through Recursive Matrix-Vector Spaces. The 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012).

[6] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, Stan Szpakowicz. SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations between Pairs of Nominals. The 5th International Workshop on Semantic Evaluation (SEMEVAL 2010).

[7] Thien Huu Nguyen, Ralph Grishman. Relation Extraction: Perspective from Convolutional Neural Networks. The 1st Workshop on Vector Space Modeling for Natural Language Processing (LatentVar 2015).

[8] Cícero dos Santos, Bing Xiang, Bowen Zhou. Classifying Relations by Ranking with Convolutional Neural Networks. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015).

[9] Shu Zhang, Dequan Zheng, Xinchen Hu, Ming Yang. Bidirectional Long Short-Term Memory Networks for Relation Classification. The 29th Pacific Asia Conference on Language, Information and Computation (PACLIC 2015).

[10] Minguang Xiao, Cong Liu. Semantic Relation Classification via Hierarchical Recurrent Neural Network with Attention. The 26th International Conference on Computational Linguistics (COLING 2016).

[11] Kun Xu, Yansong Feng, Songfang Huang, Dongyan Zhao. Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling. The 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015).

[12] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, Zhi Jin. Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths. The 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015).

[13] Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, Houfeng Wang. A Dependency-Based Neural Network for Relation Classification. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015).

[14] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, Zhi Jin. Improved Relation Classification by Deep Recurrent Neural Networks with Data Augmentation. The 26th International Conference on Computational Linguistics (COLING 2016).

[15] Rui Cai, Xiaodong Zhang, Houfeng Wang. Bidirectional Recurrent Convolutional Neural Network for Relation Classification. The 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

[16] Mike Mintz, Steven Bills, Rion Snow, Daniel Jurafsky. Distant Supervision for Relation Extraction without Labeled Data. The 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2009).

[17] Daojian Zeng, Kang Liu, Yubo Chen, Jun Zhao. Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. The 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015).

[18] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, Maosong Sun. Neural Relation Extraction with Selective Attention over Instances. The 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

[19] Yi Wu, David Bamman, Stuart Russell. Adversarial Training for Relation Extraction. The 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017).

[20] Jun Feng, Minlie Huang, Li Zhao, Yang Yang, Xiaoyan Zhu. Reinforcement Learning for Relation Classification from Noisy Data. The 32th AAAI Conference on Artificial Intelligence (AAAI 2018).

[21] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, Maosong Sun. FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation. The 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018).

[22] Tianyu Gao, Xu Han, Zhiyuan Liu, Maosong Sun. Hybrid Attention-based Prototypical Networks for Noisy Few-Shot Relation Classification. The 33th AAAI Conference on Artificial Intelligence (AAAI 2019).

[23] Zhi-Xiu Ye, Zhen-Hua Ling. Multi-Level Matching and Aggregation Network for Few-Shot Relation Classification. The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019).

[24] Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, Tom Kwiatkowski. Matching the Blanks: Distributional Similarity for Relation Learning. The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019).

[25] Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou. FewRel 2.0: Towards More Challenging Few-Shot Relation Classification. 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019).

[26] Chris Quirk, Hoifung Poon. Distant Supervision for Relation Extraction beyond the Sentence Boundary. The 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2017).

[27] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih. Cross-Sentence N-ary Relation Extraction with Graph LSTMs. Transactions of the Association for Computational Linguistics (TACL 2017).

[28] Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Allan Peter Davis, Carolyn J. Mattingly, Jiao Li, Thomas C. Wiegers, Zhiyong Lu. Overview of the BioCreative V Chemical Disease Relation (CDR) Task. The 5th BioCreative Challenge Evaluation Workshop (BioC 2015).

[29] Omer Levy, Minjoon Seo, Eunsol Choi, Luke Zettlemoyer. Zero-Shot Relation Extraction via Reading Comprehension. The 21st Conference on Computational Natural Language Learning (CoNLL 2017).

[30] Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou, Maosong Sun. DocRED: A Large-Scale Document-Level Relation Extraction Dataset. The 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019).

[31] Ruidong Wu, Yuan Yao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, Maosong Sun. Open Relation Extraction: Relational Knowledge Transfer from Supervised Data to Unsupervised Data. 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019).

[32] Tianyu Gao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, Maosong Sun. Neural Snowball for Few-Shot Relation Learning. The 34th AAAI Conference on Artificial Intelligence (AAAI 2020).

[33] Xu Han, Tianyu Gao, Yuan Yao, Deming Ye, Zhiyuan Liu, Maosong Sun. OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction. The Conference on Empirical Methods in Natural Language Processing (EMNLP 2019).

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

理论知识图谱实体关系抽取
8
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

条件熵技术

在信息论中,条件熵描述了在已知第二个随机变量 {\displaystyle X} X 的值的前提下,随机变量 {\displaystyle Y} Y 的信息熵还有多少。同其它的信息熵一样,条件熵也用Sh、nat、Hart等信息单位表示。基于 {\displaystyle X} X 条件的 {\displaystyle Y} Y 的信息熵,用 {\displaystyle \mathrm {H} (Y|X)} \mathrm{H} (Y|X) 表示。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

逻辑推理技术

逻辑推理中有三种方式:演绎推理、归纳推理和溯因推理。它包括给定前提、结论和规则

元学习技术

元学习是机器学习的一个子领域,是将自动学习算法应用于机器学习实验的元数据上。现在的 AI 系统可以通过大量时间和经验从头学习一项复杂技能。但是,我们如果想使智能体掌握多种技能、适应多种环境,则不应该从头开始在每一个环境中训练每一项技能,而是需要智能体通过对以往经验的再利用来学习如何学习多项新任务,因此我们不应该独立地训练每一个新任务。这种学习如何学习的方法,又叫元学习(meta-learning),是通往可持续学习多项新任务的多面智能体的必经之路。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

度量学习技术

即学习一个度量空间,在该空间中的学习异常高效,这种方法多用于小样本分类。直观来看,如果我们的目标是从少量样本图像中学习,那么一个简单的方法就是对比你想进行分类的图像和已有的样本图像。但是,正如你可能想到的那样,在像素空间里进行图像对比的效果并不好。不过,你可以训练一个 Siamese 网络或在学习的度量空间里进行图像对比。与前一个方法类似,元学习通过梯度下降(或者其他神经网络优化器)来进行,而学习者对应对比机制,即在元学习度量空间里对比最近邻。这些方法用于小样本分类时效果很好,不过度量学习方法的效果尚未在回归或强化学习等其他元学习领域中验证。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

特征工程技术

特征工程是利用数据所在领域的相关知识来构建特征,使得机器学习算法发挥其最佳的过程。它是机器学习中的一个基本应用,实现难度大且代价高。采用自动特征工程方法可以省去采用人工特征工程的需求。Andrew Ng 说“挖掘特征是困难、费时且需要专业知识的事,应用机器学习其实基本上是在做特征工程。”

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

噪音技术

噪音是一个随机误差或观测变量的方差。在拟合数据的过程中,我们常见的公式$y=f(x)+\epsilon$中$\epsilon$即为噪音。 数据通常包含噪音,错误,例外或不确定性,或者不完整。 错误和噪音可能会混淆数据挖掘过程,从而导致错误模式的衍生。去除噪音是数据挖掘(data mining)或知识发现(Knowledge Discovery in Database,KDD)的一个重要步骤。

对抗训练技术

对抗训练涉及两个模型的联合训练:一个模型是生成器,学习生成假样本,目标是骗过另一个模型;这另一个模型是判别器,通过对比真实数据学习判别生成器生成样本的真伪,目标是不要被骗。一般而言,两者的目标函数是相反的。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

虚拟对抗训练技术

一种新的基于虚拟对抗损失的正则化方法:一种对输出分布局部平滑性的新测量。虚拟对抗损失是模型后验分布相对于每个输入数据点周围局部扰动的鲁棒性。 VAT类似于对抗训练,与对抗训练不同的是,VAT只根据输出分布确定敌对方向,并且其适用于半监督环境。 因为VAT平滑模型的方向实际上是对抗性的,所以我们称之为虚拟对抗训练(VAT)。

信息抽取技术

信息/数据抽取是指从非结构化或半结构化文档中提取结构化信息的技术。信息抽取有两部分:命名实体识别(目标是识别和分类真实世界里的知名实体)和关系提取(目标是提取实体之间的语义关系)。概率模型/分类器可以帮助实现这些任务。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

问答系统技术

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

关系分类技术

关系分类旨在将文本中给定实体的关系分类为预定义类。

常识推理技术

常识推理是人工智能(AI)的一个分支,它关注模拟人类每天遇到的普通情境的类型和本质的假设。这些假设包括对人和物体的物理特性,目的,意图和行为的判断,以及他们的行为和相互作用的可能结果。展示常识推理的设备将能够预测结果并得出类似于人类民间心理学(人类对人们的行为和意图进行推理的天生能力)和天真物理学(人类对物理世界的自然理解)的结论。

远程监督技术

该方法由 M Mintz 于 ACL2009 上首次提出,与传统预先定义关系类别不同,Distant Supervision 通过将知识库与非结构化文本对齐来自动构建大量训练数据,减少模型对人工标注数据的依赖,增强模型跨领域适应能力。

推荐文章
暂无评论
暂无评论~