智能边缘计算的兴起
近年来,边缘计算(Edge Computing)在学术界和工业界都成为了一个热门话题。事实上,边缘计算是相对于云计算(Cloud Computing)而言的。在云计算中,所有的计算和存储资源都集中在云上,也就是数据中心(Datacenter)里;在终端设备上产生的数据通过网络传输到云上,计算任务和数据处理都在云上进行。而在边缘计算中,计算和存储资源被部署到边缘上(边缘服务器或者终端设备),可以就近对本地的数据进行处理,无需把数据传输到远端的云上,从而避免网络传输带来的延迟。
虽然边缘计算成为广受关注的热门话题的时间并不久,但边缘计算的概念并不新。早在2008年,微软研究院的 Victor Bahl 博士邀请了学术界和工业界的知名学者,包括卡内基·梅隆大学的 Mahadev Satyanarayanan 教授、AT&T 实验室的 Ramón Cáceres博士、兰卡斯特大学(Lancaster University, U.K.)的Nigel Davies教授、英特尔研究院(Intel Research)的 Roy Want 博士等,一起探讨云计算的未来时 [1],就提出了基于 Cloudlet 的边缘计算的概念;并于次年在 IEEE Pervasive Computing 期刊上发表了广为人知的名为 “The Case for VM-based Cloudlets in Mobile Computing”的文章 [2]。
此后,越来越多的研究人员开始关注边缘计算。值得一提的是,2016年,首届专注于边缘计算的学术会议 The First IEEE/ACM Symposium on Edge Computing 在美国华盛顿特区召开 [3]。目前,边缘计算已成为相关顶级学术会议(比如MobiCom)的重要专题之一。在工业界,2017年微软公司 CEO 萨提亚·纳德拉就将边缘计算和云计算并列成为全公司的战略之一。之后,各大云计算公司和运营商都纷纷推出了自己的边缘计算服务;边缘计算相关的创业公司更是不断涌现。
在人工智能时代,边缘计算不仅仅只是计算,更是智能+计算,我们称之为智能边缘计算(Intelligent Edge Computing)。
计算模式的轮回:
在集中式和分布式之间的摇摆
唯物辩证法指出,事物的发展总是曲折、循环往复,并在波浪中不断前进的。计算模式(Computing Paradigm)也不例外。如图1所示,如果我们回顾计算模式的发展历史,就会发现一个简单的规律:计算模式是在集中式计算和分布式计算之间不断摇摆,往复式发展前进的。
在大型机(Mainframe)时代,计算资源稀缺,很多人共享一台主机,计算是集中式的;到了个人计算(Personal Computing)时代,硬件变得小型化,价格低廉,人们可以拥有自己的个人设备,计算成为了分布式的;在云计算时代,通过高速网络,人们可以共享云上的海量的计算和存储资源,计算模式又回到集中式的。此时,人工智能蓬勃发展,云上提供的众多智能服务带来了智能云计算。而随着边缘计算的出现,计算模式再一次成为分布式的。现在,我们不仅有智能云,还有智能边缘。
智能边缘计算的出现当然不仅仅是满足表面上的简单规律,背后有其必然性和强大的驱动力,是计算机软硬件和新应用新需求不断发展的必然结果。