Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

预训练小模型也能拿下13项NLP任务,谷歌ALBERT三大改造登顶GLUE基准

在预训练语言模型中,小模型也有出头的一天?大力出奇迹这道坎也能轻松跨越?看看谷歌最新提出来的 GLUE 榜首模型:A LITE BERT。

通常而言,在预训练自然语言表征时增加模型大小可以提升模型在下游任务中的性能。但在某些情况下,由于 GPU/TPU 内存限制、训练时间延长以及意外的模型退化等原因,进一步增加模型大小的难度也随之增加。

所以,为了解决这些问题,来自谷歌的研究者提出通过两种参数精简技术来降低内存消耗,加快 BERT 的训练速度。

值得注意的是,ALBERT 模型在 GLUE、RACE 和 SQuAD 基准测试上都取得了新的 SOTA 效果,并且参数量还少于 BERT-large。要知道,目前 BERT-Large 已经在 GLUE 基准排到了 16 名,而 ALBERT 这个新模型竟然以更少的参数量荣登榜首。ALBERT 已经投递到了 ICLR 2020,目前正处于双盲审阶段。

论文地址:https://openreview.net/pdf?id=H1eA7AEtvS

我们先看看 ALBERT 的的参数量,简直是预训练语言模型中的「一股清流」。

表 2:本文中用到的 BERT 和 ALBERT 模型配置。

就这样参数量的语言模型,也能克服大力出奇迹这道坎?事实证明,ALBERT 通过为下游任务共享所有层的所有参数,即使训练数据集不大,也能拿个 GLUE 基准榜首。

当前 GLUE 基准的结果。

研究者表明,通过对词嵌入矩阵进行因式分解,再为下游任务共享不同层的所有参数,这样可以大大降低 BERT 的参数量。我们再也不要担心 GPU 动不动就报错「out of memory」,下游应用也能更轻松一些。此外,研究者还提出了一种新型句间连贯性损失函数,它可以强迫模型学习句间的连贯性表达,从而有利于各种下游 NLP 任务。

总体而言,通过三大改造,ALBERT 这种小模型也能登绝顶。

曾经,预训练是大模型的天下

预训练已经促使语言表征学习领域取得了一系列突破。诸多不凡的 NLP 任务,包括那些训练数据有限的任务,都大大受益于这些预训练模型。

语言表征学习领域的这些进展表明,大模型对于实现 SOTA 性能表现极其重要。预训练大模型,并在实际应用中将它们提炼成更小的模型已经成为一种常见的做法。考虑到模型大小的重要性,研究者提出一个问题:建立更好的 NLP 模型像构建更大的模型一样容易吗?

解答该问题的难点在于可用硬件的内存会受到限制。考虑到当前的 SOTA 模型常常包含数亿甚至数十亿参数,扩展模型时很容易受到内存的限制。

研究者还观察到,仅仅增加 BERT-large 等模型的隐藏层大小也会导致性能下降。如下表 1 和图 1 所示,研究者将 BERT-large 的隐藏层大小增加一倍,该模型(BERT-xlarge)在 RACE 基准测试上的准确率显著降低。

表 1:增加 BERT-large 的隐藏层大小,模型在 RACE 上的表现变差。

图 1:BERT-large 和 BERT-xlarge 的训练损失(左)和 dev mask 的 LM 准确率(右)。模型增大之后,其 mask LM 准确率降低了,同时没有出现明显的过拟合迹象。

现在,小模型也已崛起

为了解决上述问题,谷歌的研究者设计了「一个精简的 BERT」(A Lite BERT,ALBERT),参数量远远少于传统的 BERT 架构。

ALBERT 通过两个参数削减技术克服了扩展预训练模型面临的主要障碍。第一个技术是对嵌入参数化进行因式分解。研究者将大的词汇嵌入矩阵分解为两个小的矩阵,从而将隐藏层的大小与词汇嵌入的大小分离开来。这种分离使得隐藏层的增加更加容易,同时不显著增加词汇嵌入的参数量。

第二种技术是跨层参数共享。这一技术可以避免参数量随着网络深度的增加而增加。两种技术都显著降低了 BERT 的参数量,同时不对其性能造成明显影响,从而提升了参数效率。ALBERT 的配置类似于 BERT-large,但参数量仅为后者的 1/18,训练速度却是后者的 1.7 倍。这些参数削减技术还可以充当某种形式的正则化,可以使训练更加稳定,而且有利于泛化。

为了进一步提升 ALBERT 的性能,研究者还引入了一个自监督损失函数,用于句子级别的预测(SOP)。SOP 主要聚焦于句间连贯,用于解决原版 BERT 中下一句预测(NSP)损失低效的问题。

基于这些设计,ALBERT 能够扩展为更大的版本,参数量仍然小于 BERT-large,但性能可以显著提升。研究者在知名的 GLUE、SQuAD 和 RACE 自然语言理解基准测试上都得到了新的 SOTA 结果:在 RACE 上的准确率为 89.4%,在 GLUE 上的得分为 89.4,在 SQuAD 2.0 上的 F1 得分为 92.2。

ALBERT 的三大改造

前面已经展示了小模型的优势,以及 ALBERT 的核心思想,那么 ALBERT 具体结构又是怎么样的。在这一部分中,我们将简要介绍 ALBERT 的三大模块,并提供与标准 BERT 的量化对比。

ALBERT 架构的骨干网络与 BERT 是相似的,即使用 Transformer 编码器和 GELU 非线性激活函数。现在先约定一下 BERT 的表示方式,即指定词嵌入大小为 E、编码器层数为 L、隐藏层大小为 H。与 Devlin 等人的研究一样,这篇论文将前馈网络/滤波器大小设置为 4H,将注意力 Head 的数量设置为 H/64。

如下将介绍 ALBERT 最为独特的三大结果。

嵌入向量参数化的因式分解

在 BERT 以及后续的 XLNet 和 RoBERTa 中,WordPiece 词嵌入大小 E 和隐藏层大小 H 是相等的,即 E ≡ H。由于建模和实际使用的原因,这个决策看起来可能并不是最优的。

从建模的角度来说,WordPiece 词嵌入的目标是学习上下文无关的表示,而隐藏层嵌入的目标是学习上下文相关的表示。通过上下文相关的实验,BERT 的表征能力很大一部分来自于使用上下文为学习过程提供上下文相关的表征信号。因此,将 WordPiece 词嵌入大小 E 从隐藏层大小 H 分离出来,可以更高效地利用总体的模型参数,其中 H 要远远大于 E。

从实践的角度,自然语言处理使用的词典大小 V 非常庞大,如果 E 恒等于 H,那么增加 H 将直接加大嵌入矩阵的大小,这种增加还会通过 V 进行放大。

因此,对于 ALBERT 而言,研究者对词嵌入参数进行了因式分解,将它们分解为两个小矩阵。研究者不再将 one-hot 向量直接映射到大小为 H 的隐藏空间,而是先将它们映射到一个低维词嵌入空间 E,然后再映射到隐藏空间。通过这种分解,研究者可以将词嵌入参数从 O(V × H) 降低到 O(V × E + E × H),这在 H 远远大于 E 的时候,参数量减少得非常明显。

跨层参数共享

对于 ALBERT,研究者提出了另一种跨层参数共享机制来进一步提升参数效率。其实目前有很多方式来共享参数,例如只贡献前馈网络不同层之间的参数,或者只贡献注意力机制参数,而 ALBERT 采用的是贡献所有层的所有参数

这种机制之前也是有的,但研究者的度量发现词嵌入的 L2 距离和余弦相似性是震荡而不是收敛。如下图 2 展示了每一层输入与输出嵌入矩阵间的 L2 距离与余弦相似性

图 2:BERT-Large 与 ALBERT-Large 每一层输入嵌入与输出嵌入间的 L2 距离与余弦相似性

研究者发现 ALBERT 从一层到另一层的转换要比 BERT 平滑得多,结果表明,权重共享有效地提升了神经网络参数的鲁棒性。即使相比于 BERT 这两个指标都有所下降,但在 24 层以后,它们也不会收敛到 0。

句间连贯性损失

除了自编码语言建模损失外,BERT 还是用了额外的下一句预测损失。下一句预测损失本来是为了提升下游任务的性能,但是后来很多研究者发现这种机制并不是很高效,因此决定去除它。

研究者猜测,下一句预测任务低效的原因,主要是它的难度太小。因为下一句预测将主题预测和连贯性预测结合到单个任务中,然而主题预测比连贯性预测简单得多,因此它与语言建模损失函数学到的内容是有重合的。

研究者表示,句间建模在语言理解中是非常重要的,因此他们提出了一种基于语言连贯性的损失函数。对于 ALBERT,研究者使用了一个句子顺序预测(SOP)损失函数,它会避免预测主题,而只关注建模句子之间的连贯性。

具体的损失函数表达式读者可以查阅原论文,但研究者表示,在使用了该损失函数后,ALBERT 能显著提升下游多句子编码任务的性能。

ALBERT 效果如何

为了进行更公平的对比,研究者在原始 BERT 的配置下训练试验模型效果。研究者使用了 BOOKCORPUS 和 English Wikipedia 共计 16GB 的纯文本作为预训练任务的数据。它们在 Cloud TPU V3 上训练所有的模型,TPU 数量从 64 到 1024 会根据模型大小进行选择。

如下表 3 所示,只有 BERT-Large 70% 的参数量,ALBERT-xxlarge 能实现显著的性能提升。

表 3:模型在 BOOKCORPUS 和 Wikipedia 数据集训练 125k 步后的开发集结果。

如上所示,ALBERT 相比 BERT 有更高的数据吞吐量,其中最慢的就是 BERT-xLarge,它也作为了基线结果。随着模型越来越大,BERT 和 ALBERT 之间的差别也越来越大。

前面介绍过嵌入矩阵分解的优势,如下表 4 展示了修改词嵌入大小 E 带来的影响,它们的参数量及下游任务效果也都展示在内。

表 4:ALBERT-base 随词嵌入大小的改变,其性能与参数量的变化。

对于 ALBERT 的第二个基础——跨层参数共享,下面表 5 展示了该机制的效果,其同样使用 ALBERT-base 作为示例模型。

表 5:跨层参数共享策略的效果,此处用到的模型是 ALBERT-base。

对于 ALBERT 的第三大基础——句间连贯性损失(SOP),下表 6 展示了其与下一句预测损失(NSP)的对比效果。

表 6:句子预测损失、NSP、SOP 的效果。

表 3 中的加速结果表明,BERT-large 的数据吞吐量是 ALBERT-xxlarge 的 3.17 倍。我们知道,延长训练时间通常能提升模型的表现,因此研究者决定让模型训练差不多相同的时间来观察其表现。下图 7 展示了实验结果:

表 7:BERT-large 和 ALBERT-xxlarge 在控制训练时间时的效果。

在训练了差不多相同的时间之后,ALBERT-xxlarge 明显优于 BERT-large。

上述实验都是在 Wikipedia 和 BOOKCORPUS 数据集上进行的,那么,如果增加额外的数据会对结果产生怎样的影响?

图 3a:在训练期间添加额外数据的影响。

图 3a 表明,添加额外数据后,模型的开发集 MLM 准确率显著提升。

此外,研究者还观察了添加额外数据后模型在下游任务中的性能情况,如下表 8 所示:

表 8:有/无额外训练数据的结果,此处使用的模型是 ALBERT-base。

研究者还注意到,即使在训练了 100 万步之后,最大的模型仍然没有过拟合。因此,他们决定删除 dropout,以进一步提高模型能力。如下图 3b 所示,去掉 dropout 可以显著提高 MLM 准确度。

图 3b:移除 dropout 前后的模型性能。

表 9:移除 dropout 前后的结果,此处使用的模型是 ALBERT-xxlarge。

除了上述实验之外,ALBERT 在 GLUE、SQuAD 和 RACE 基准测试中都取得了 SOTA 结果,如下图 10、11 所示:

表 10:ALBERT 在 GLUE 基准上的 SOTA 结果。

表 11:ALBERT 在 SQuAD 和 RACE 基准上的 SOTA 结果。

理论BERT模型ALBERTGLUE排行榜自然语言处理自然语言理解
4
相关数据
激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

自然语言理解技术

自然语言理解是人工智能的核心课题之一,也被广泛认为是最困难和最具标志性的任务。最经典的两个人工智能思想实验——图灵测试和中文房间,都是围绕自然语言理解来构建的。自然语言理解在人工智能技术体系中的重要性不言而喻,它一方面承载着机器和人的交流,另一方面直达知识和逻辑。自然语言理解也是人工智能学者孜孜以求的圣杯,机器学习的巨擘 Michael I. Jordan 就曾经在 Reddit 上的 AMA(Ask Me Anything)栏目中畅想用十亿美元建立一个专门用于自然语言理解的实验室。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

词嵌入技术

词嵌入是自然语言处理(NLP)中语言模型与表征学习技术的统称。概念上而言,它是指把一个维数为所有词的数量的高维空间嵌入到一个维数低得多的连续向量空间中,每个单词或词组被映射为实数域上的向量。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

余弦相似性技术

余弦相似性通过测量两个向量的夹角的余弦值来度量它们之间的相似性。0度角的余弦值是1,而其他任何角度的余弦值都不大于1;并且其最小值是-1。从而两个向量之间的角度的余弦值确定两个向量是否大致指向相同的方向。两个向量有相同的指向时,余弦相似度的值为1;两个向量夹角为90°时,余弦相似度的值为0;两个向量指向完全相反的方向时,余弦相似度的值为-1。这结果是与向量的长度无关的,仅仅与向量的指向方向相关。余弦相似度通常用于正空间,因此给出的值为0到1之间。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

因式分解技术

在数学中,把一个数学因子(比如数字,多项式,或矩阵)分解其他数学因子的乘积。比如:整数15可以分解成两个质数3和5的乘积,一个多项式x^2 -4 可被因式分解为(x+2)(x-2)。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

矩阵分解技术

矩阵分解是一种将矩阵简化为其组成部分的方法。这种方法可以简化更复杂的矩阵运算,这些运算可以在分解的矩阵上执行,而不是在原始矩阵本身上执行。它的衍生Non-negative matrix factorization也被用于降维等操作上。

推荐文章
暂无评论
暂无评论~