PyTorch Lightning 地址:https://github.com/williamFalcon/pytorch-lightning
看起来像 Keras 的 PyTorch
Keras 本身的目的就是对深度学习框架(TensorFlow、Theano)进行了进一步的 API 封装。作为 TensorFlow 的高度封装,Keras 的抽象层次非常高,很多 API 细节都隐藏了起来。虽然 PyTorch 同样使用动态计算图,也方便快捷,但总体上 Keras 隐藏的细节更多一些。
反观 PyTorch,它提供一个相对较低级别的实验环境,使用户可以更加自由地编写自定义层、查看数值优化任务等等。例如在 PyTorch 1.0 中,编译工具 torch.jit 就包含一种名为 Torch Script 的语言,它是 Python 的子语言,开发者使用它能进一步对模型进行优化。
用 PyTorch 写模型,除了数据加载和模型定义部分外,整个训练和验证的逻辑、配置都需要我们手动完成,这些步骤都较为繁琐。甚至可以说,研究者需要耗费相当多的精力处理这一部分的代码,还要祈祷不出 Bug。但是对于大多数研究实验来说,训练和验证的循环体差不多都是一样的,实现的功能也相当一致,所以为什么不将这些通用的东西都打包在一起,这样训练不就简单了么?
William Falcon 正是这样想的,他将 PyTorch 开发中的各种通用配置全都包装起来,我们只需要写核心逻辑就行。通过 PyTorch Lightning,PyTorch 就类似于 Keras,它能以更高级的形式快速搭建模型。
项目作者是谁
要完成这样的工作,工作量肯定是非常大的,因为从超参搜索、模型 Debug、分布式训练、训练和验证的循环逻辑到模型日志的打印,都需要写一套通用的方案,确保各种任务都能用得上。所以 Facebook 的这位小哥哥 William Falcon 还是很厉害的。
他是一位 NYU 和 Facebook 的开发者。目前在 NYU 攻读 PhD。从 GitHub 的活动来看,小哥是一位比较活跃的开发者。
这是一位披着 Keras 外衣的 PyTorch
Lightning 是 PyTorch 非常轻量级的包装,研究者只需要写最核心的训练和验证逻辑,其它过程都会自动完成。因此这就有点类似 Keras 那种高级包装,它隐藏了绝大多数细节,只保留了最通俗易懂的接口。Lightning 能确保自动完成部分的正确性,对于核心训练逻辑的提炼非常有优势。
那么我们为什么要用 Lightning?
当我们开始构建新项目,最后你希望做的可能就是记录训练循环、多集群训练、float16 精度、提前终止、模型加载/保存等等。这一系列过程可能需要花很多精力来解决各式各样、千奇百怪的 Bug,因此很难把精力都放在研究的核心逻辑上。
通过使用 Lightning,这些部分都能保证是 Work 的,因此能抽出精力关注我们要研究的东西:数据、训练、验证逻辑。此外,我们完全不需要担心使用多 GPU 加速会很难,因为 Lightning 会把这些东西都做好。
所以 Lightning 都能帮我们干什么?
下图展示了构建一个机器学习模型都会经历哪些过程,很多时候最困难的还不是写模型,是各种配置与预处理过程。如下蓝色的部分需要用 LightningModule 定义,而灰色部分 Lightning 可以自动完成。我们需要做的,差不多也就加载数据、定义模型、确定训练和验证过程。
下面的伪代码展示了大致需要定义的几大模块,它们再加上模型架构定义就能成为完整的模型。
# what to do in the training loop
def training_step(self, data_batch, batch_nb):
# what to do in the validation loop
def validation_step(self, data_batch, batch_nb):
# how to aggregate validation_step outputs
def validation_end(self, outputs):
# and your dataloaders
def tng_dataloader():
def val_dataloader():
def test_dataloader():
除了需要定义的模块外,以下步骤均可通过 Lightning 自动完成。当然,每个模块可以单独进行配置。
Lightning 怎么用
Lightning 的使用也非常简单,只需要两步就能完成:定义 LightningModel;拟合训练器。
以经典的 MNIST 图像识别为例,如下展示了 LightningModel 的示例。我们可以照常导入 PyTorch 模块,但这次不是继承 nn.Module,而是继承 LightningModel。然后我们只需要照常写 PyTorch 就行了,该调用函数还是继续调用。这里看上去似乎没什么不同,但注意方法名都是确定的,这样才能利用 Lightning 的后续过程。
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets
import MNIST
import torchvision.transforms as transforms
import pytorch_lightning as ptl
class CoolModel(ptl.LightningModule):
def __init__(self):
super(CoolModel, self).__init__()
# not the best model...
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def my_loss(self, y_hat, y):
return F.cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'loss': self.my_loss(y_hat, y)}
def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'val_loss': self.my_loss(y_hat, y)}
def validation_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
return {'avg_val_loss': avg_loss}
def configure_optimizers(self):
return [torch.optim.Adam(self.parameters(), lr=0.02)]
@ptl.data_loader
def tng_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
@ptl.data_loader
def val_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
@ptl.data_loader
def test_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
随后,第二步即拟合训练器。这就比较类似 Keras 这类高级包装了,它将训练配置细节、循环体、以及日志输出等更加具体的信息全都隐藏了,一个 fit() 方法就能自动搞定一切。
这相比以前写 PyTorch 更加便捷精炼一些,而且分布式训练也非常容易,只要给出设备 id 就行了。
from pytorch_lightning import Trainer
from test_tube
import Experiment
model = CoolModel()
exp = Experiment(save_dir=os.getcwd())
# train on cpu using only 10% of the data (for demo purposes)
trainer = Trainer(experiment=exp, max_nb_epochs=1, train_percent_check=0.1)
# train on 4 gpus
# trainer = Trainer(experiment=exp, max_nb_epochs=1, gpus=[0, 1, 2, 3])
# train on 32 gpus across 4 nodes (make sure to submit appropriate SLURM job)
# trainer = Trainer(experiment=exp, max_nb_epochs=1, gpus=[0, 1, 2, 3, 4, 5, 6, 7], nb_gpu_nodes=4)
# train (1 epoch only here for demo)
trainer.fit(model)
# view tensorflow logs
print(f'View tensorboard logs by running\ntensorboard --logdir {os.getcwd()}')
print('and going to http://localhost:6006 on your browser')
其他特性
Pytorch-Lightning 还可以和 TensorBoard 无缝对接。
只需要定义运行的路径:
from test_tube import Experiment
from pytorch-lightning import Trainer
exp = Experiment(save_dir = '/some/path')
trainer = Trainer(experiment = exp)
将 TensorBoard 连接到路径上即可:
tensorboard -logdir /some/path