Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

罗志鹏作者深兰科技北京AI研发中心单位

机器学习识别植物疾病,这是CVPR挑战赛冠军团队的解决方案

国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,CVPR是世界顶级的计算机视觉会议之一,会议的主要内容是计算机视觉与模式识别技术。CVPR 2019 在洛杉矶长滩举行,FGVC6 Workshop也将作为 CVPR 2019 的一部分如期召开。FGVC6 Workshop 共有十个挑战赛,每个都代表了细粒度视觉分类在某个细分领域的挑战。

1.1FGVC介绍

FGVC全称为Fine-Grained Visual Categorization,细粒度图像分类,即区分不同的动物和植物、汽车和摩托车模型、建筑风格等,是机器视觉社区刚刚开始解决的最有趣和最有用的开放问题之一。细粒度图像分类在于基本的分类识别(对象识别)和个体识别(人脸识别,生物识别)之间的连续性。相似的类别之间的视觉区别通常非常小,因此很难用当今的通用识别算法来解决。

今年是FGVC举办的第六届比赛,往届比较著名的比赛诸如iNaturalist和iMaterialist,前者侧重于区分自然界不同的生物,后者则是侧重于区分不同的人造物体。

不同于传统的广义上的分类任务,FGVC的挑战致力于子类别的划分,需要分类的对象之间更加相似,例如区分不同的鸟类、不同的植物、不同的日用品等。

1.2赛题介绍

Cassava Disease Classification挑战赛是一个根据木薯的叶子区分不同种类的木薯疾病的任务。Cassava 译为木薯,是非洲第二大碳水化合物供应者,因为其能够承受恶劣的环境。因此木薯是小农种植的一种关键的粮食安全作物,在撒哈拉以南非洲,至少80%的小农家庭种植木薯,而病毒性疾病是低产量的主要来源。

在这次比赛中,主办方引入一个包含5种类别的木薯叶疾病的数据集,该数据集源于在乌干达定期调查中收集到的9436标记图像,主要从农民在自家田地里拍摄的图片,然后由国家作物资源研究所(NaCRRI)与Makarere大学的人工智能实验室共同对图像进行标注。

数据集包括木薯植株的叶子图像,9,436张带注释的图像和12,595张未标记的图像。参与者可以选择使用未标记的图像作为额外的训练数据。目标是学习一个模型,使用训练数据中的图像将给定的图像分类为这4个疾病类别或健康叶子的类别。

1.3团队成绩

1.4题目特点以及常用方法

细粒度图像分类 (Fine-grained image categorization), 又被称作子类别图像分类 (Sub-category recognition)。 其目的是对属于同一基础类别的图像进行更加细致的子类划分, 但由于子类别间细微的类间差异以及较大的类内差异, 更传统的图像分类任务相比, 细粒度图像分类难度明显要大很多。从下图中的木薯的叶子可以看出,不同的叶子病变情况长相非常相似,此外同一类别由于姿态,背景以及拍摄角度的不同,存在较大的类内差异。

细粒度图像分类的常用方法可以分为两种,分别是基于强监督信息的方法和仅使用弱监督信息的方法。前者需要使用对象的边界框和局部标注信息,后者仅使用类别标签,Cassava Disease Classification是一种弱监督信息的细粒度识别,一般采用预训练模型finetune,并结合训练技巧对模型精调。

1.5实验模型:SENet、ResNet、DenseNet

ResNet是CNN历史上一个里程碑事件,模型深度达到了152层,这和之前CNN的层数完全不在一个量级上。ResNet中的identity的这条线类似一条电路上的短路(shortcuts,skip connection),使得模型学习更加容易,深层可以直接得到浅层的网络特征。

DenseNet的原理不同于ResNet通过加深网络层数以及Inception通过加宽网络宽度来提高模型识别能力,而是利用特征重用和类似ResNet的Bypass的方式,减少了网络参数和缓解了梯度消失的问题。

SENet提出了Sequeeze and Excitation block,该模块于传统网络的最大区别在于其侧重于构建通道之间的依赖关系,利用global average pooling来Sequeeze特征图,并用Excitation对前者进行非线性变换,最后再叠加到输入特征上。可以自适应的校准通道的相应特征,并且该模块可以嵌入到现有的网络结构中,实现精度的提升。

1.6模型训练与评测。

原图     VerticalFlip HorizontalFlip RandomRotate   RandomCrop

  RandomErasing  

 CutOut

由于训练集样本过少,对比分析后对输入数据采取 VerticalFlip, HorizontalFilp 、RandomRotate和RandomCrop的增强操作。此外,还使用了RandomErasing和Cutout,方法会在原图随机选择一些矩形区域,改变该区域的像素值,通过这些数据增强的方式,训练集的图片会被不同程度的遮挡,这样可以进一步降低过拟合的风险并提高模型的鲁棒性。

同样的,为了增强模型的鲁棒性减少过拟合,本次比赛我们利用5-fold cross validation,交叉验证有效利用了有限的数据,并且评估结果能够尽可能接近模型在测试集上的表现。用cross validation之后,SE_ResNeXt50测试集准确率提升0.01016,ResNet34测试集准确率提升0.01142。

这次比赛中,我们还使用了Mixup和label smoothing的训练策略。Mixup顾名思义就是将两张图片按一定比例融合起来作为输入,计算loss时,针对两张图片的标签分别计算,然后按比例加权求和。Mixup是一种抑制过拟合的策略,通过增加了一些数据上的扰动,从而提升了模型的泛化能力。

实验证明,该方式能将Top1准确率提高近一个百分点。对于分类问题,常规做法时将类别换成one-hot vector。由于标签是类别的one-hot vector,这样做易导致过拟合使得模型泛化能力下降;同时这种做法会将所属类别和非所属类别之间的差距尽可能大,因此很难调优模型。为此,可以用label smoothing对标签进行平滑处理,软化one-hot类型标签,使得计算损失函数时能有效抑制过拟合现象。

训练以Adam为optimiser,学习率的设置为阶梯状,共四个取值,[3e-4, 1e-4, 1e-5, 1e-6],设置patience为4来衰减学习率,即模型连续4个epoch在验证集上效果没有提升则衰减学习率,训练总的epcoh在20次左右。本实验使用的GPU为4卡2080Ti,并行训练一个模型,batch size通常设为32,较大的模型根据实际情况适当减小。

模型在预测时采用了数据增强的方式Test time augmentation(TTA),即将样本图像进行多个不同的变换获得多个不同的预测结果,再将预测结果进行平均,提高精度。本次任务利用3*TTA,包括 RandomCrop, RandomCrop+HorizontalFlip 和RandomCrop+VerticalFlip 。

模型集成是算法比赛中常用的提高模型精度方法,本次比赛我们训练了大量在ImageNet上表现优良的模型,其中表现较好的模型如下表所示、在采取多种融合方式之后,最终发现SE_ResNeXt50、SE_ResNeXt101、SENet154以及DenseNet201按照归一化后权重的融合效果最好,在测试集上的准确率达到了0.92516。


模型

测试集准确率

SE_ResNeXt50

0.92251

SE_ResNeXt101

0.92384

SENet154

0.92384

DenseNet201

0.91721

MobileNetV2

0.91601

ResNet152

0.91710

SE_ResNeXt50+SE_ResNeXt101+SENet154+DenseNet201

0.92516

本次比赛主办方提供了12595张未带label的额外数据集,为了充分利用该数据集,利用在测试集表现最好的融合模型给这些数据集贴上伪标签。然后利用训练集和伪标签数据集训练模型,为了防止模型在伪标签上过拟合,我们对伪标签采取了一定的筛选操作。

采取的思路是:用多个不同概率阈值的过滤所得到的伪标签进行线下实验,看哪个阈值下的数据在线下的表现最好,就用通过该阈值筛选过滤出的数据,最终以0.95的阈值筛选出一半的数据作为添加到训练集的伪标签数据。

实验证明这种半监督的学习方法具有更强的泛化能力。

模型

测试集准确率

(public  leaderboard)

Private leaderboard

SE_ResNeXt50

0.92251

0.93012

SE_ResNeXt50 with pseudo data

0.92195

0.93512

SE_ResNeXt101

0.92384

0.93134

SE_ResNeXt101 with pseudo data

0.92202

0.93409

SENet154

0.92384

0.93054

SE_ResNeXt154 with pseudo data

0.92283

0.93428

SE_ResNeXt50+SE_ResNeXt101+

SENet154+DenseNet201

0.92516

0.93727

SE_ResNeXt50+SE_ResNeXt101+

SENet154+DenseNet201

with pseudo data

0.92516

0.9386

1.7进一步工作

针对细粒度图像分类,MSRA有一个结论:分析该问题时图像的形态、轮廓特征原没细节纹理特征重要,而传统的CNN模型都是在构建轮廓特征,因此在构建神经网络时,应该更加精确地找到图像中最有区分度的子区域,然后再对这些区域采用高分辨率、精细化特征的方法,这样可以进一步提高细粒度图像分类准确率

另外对数据本身我们可能需要做更多的工作,在任务初期没有做足够的探索性数据分析,例如数据的分布、类型、输入图像的尺寸等都是影响结果的因素,因此数据分析也是后面的一个尝试点。

产业机器视觉图像分类过拟合
3
相关数据
数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

学习率技术

在使用不同优化器(例如随机梯度下降,Adam)神经网络相关训练中,学习速率作为一个超参数控制了权重更新的幅度,以及训练的速度和精度。学习速率太大容易导致目标(代价)函数波动较大从而难以找到最优,而弱学习速率设置太小,则会导致收敛过慢耗时太长

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

验证集技术

验证数据集是用于调整分类器超参数(即模型结构)的一组数据集,它有时也被称为开发集(dev set)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

机器视觉技术

机器视觉(Machine Vision,MV)是一种为自动化检测、过程控制和机器人导航等应用提供基于图像的自动检测和分析的技术和方法,通常用于工业领域。

暂无评论
暂无评论~