Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

深度学习模型大合集:GitHub趋势榜第一,两天斩获2000星

最近,威斯康辛大学麦迪逊分校统计学助理教授、机器学习深度学习研究者 Sabastian Raschka 在 GitHub 上创建了一个项目,包含大量深度学习架构、模型和 tips。该项目发布两天即获得了 2000 多星,目前在 GitHub Trending 上名列第一。

项目地址:https://github.com/rasbt/deeplearning-models

目录

该项目的目录如下:

  • 传统机器学习

  • 多层感知机

  • 卷积神经网络(CNN)

  • 度量学习(Metric Learning)

  • 自编码器

  • 生成对抗网络(GAN)

  • 循环神经网络(RNN)

  • 有序回归

  • 技巧和窍门

  • PyTorch 工作流和机制

  • TensorFlow 工作流和机制

其中每个部分包含多个子部分,主要介绍了各部分相关的模型和 TensorFlow、PyTorch 实现。

以 CNN 为例,我们来看一下它包含哪些内容。

卷积神经网络

这部分首先介绍了 CNN 的基础知识和概念,然后介绍了不同的 CNN 模型,如全卷积神经网络AlexNetVGG、ResNet 等,每个子部分都包含示例及其 TensorFlow 和 PyTorch 实现。

技巧和窍门

除了模型,该项目还介绍了一些模型训练的技巧和窍门。

这部分主要介绍了 PyTorch 中的周期学习率(cyclical learning rate),具体涉及三项内容:

  • 简要介绍了周期学习率的基础概念;

  • 使用「LR range test」为周期学习率选择基础和最大学习率

  • 使用周期学习率在 CIFAR-10 上训练简单的卷积神经网络

详情参见:https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

PyTorch 和 TensorFlow 的工作流和机制

该项目的最后介绍了 PyTorch 和 TensorFlow 的工作流和机制,涉及数据集、训练和预处理等内容。

工程深度学习模型TensorFlowPyTorchGitHub
7
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

多层感知机技术

感知机(Perceptron)一般只有一个输入层与一个输出层,导致了学习能力有限而只能解决线性可分问题。多层感知机(Multilayer Perceptron)是一类前馈(人工)神经网络及感知机的延伸,它至少由三层功能神经元(functional neuron)组成(输入层,隐层,输出层),每层神经元与下一层神经元全互连,神经元之间不存在同层连接或跨层连接,其中隐层或隐含层(hidden layer)介于输入层与输出层之间的,主要通过非线性的函数复合对信号进行逐步加工,特征提取以及表示学习。多层感知机的强大学习能力在于,虽然训练数据没有指明每层的功能,但网络的层数、每层的神经元的个数、神经元的激活函数均为可调且由模型选择预先决定,学习算法只需通过模型训练决定网络参数(连接权重与阈值),即可最好地实现对于目标函数的近似,故也被称为函数的泛逼近器(universal function approximator)。

VGG技术

2014年,牛津大学提出了另一种深度卷积网络VGG-Net,它相比于AlexNet有更小的卷积核和更深的层级。AlexNet前面几层用了11×11和5×5的卷积核以在图像上获取更大的感受野,而VGG采用更小的卷积核与更深的网络提升参数效率。VGG-Net 的泛化性能较好,常用于图像特征的抽取目标检测候选框生成等。VGG最大的问题就在于参数数量,VGG-19基本上是参数量最多的卷积网络架构。VGG-Net的参数主要出现在后面两个全连接层,每一层都有4096个神经元,可想而至这之间的参数会有多么庞大。

学习率技术

在使用不同优化器(例如随机梯度下降,Adam)神经网络相关训练中,学习速率作为一个超参数控制了权重更新的幅度,以及训练的速度和精度。学习速率太大容易导致目标(代价)函数波动较大从而难以找到最优,而弱学习速率设置太小,则会导致收敛过慢耗时太长

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

度量学习技术

即学习一个度量空间,在该空间中的学习异常高效,这种方法多用于小样本分类。直观来看,如果我们的目标是从少量样本图像中学习,那么一个简单的方法就是对比你想进行分类的图像和已有的样本图像。但是,正如你可能想到的那样,在像素空间里进行图像对比的效果并不好。不过,你可以训练一个 Siamese 网络或在学习的度量空间里进行图像对比。与前一个方法类似,元学习通过梯度下降(或者其他神经网络优化器)来进行,而学习者对应对比机制,即在元学习度量空间里对比最近邻。这些方法用于小样本分类时效果很好,不过度量学习方法的效果尚未在回归或强化学习等其他元学习领域中验证。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

推荐文章
暂无评论
暂无评论~