Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

学术俊作者

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

ACM SIGKDD(Conference on Knowledge Discovery and Data Mining, KDD)是世界数据挖掘领域的最高级别的国际会议,由 ACM(Association of Computing Machinery,计算机学会)的数据挖掘及知识发现专委会(SIGKDD)负责协调筹办,被中国计算机协会荐为 A 类会议。

KDD 2019 包括两个 track:Research track 和 Applied Data Science track。

今年的 KDD Research track 共评审约 1200 篇投稿,其中约 110 篇 oral 论文,60 篇 poster 论文,接收率约 14%,比往年的 17%~18% 还要下降了近 4 个百分点。此前 3 年 KDD Research track 的录用情况分别是:投稿 983 篇,收录 178 篇(2018);投稿748 篇,收录 130 篇(2017);投稿 784篇,收录142 篇(2016)。

而此次 ADS track 约投稿 700 篇,其中 45 篇 oral 论文,100 篇 poster 论文。

学术君今天为大家推荐的是清华大学和京东发表于KDD 2019的工作。

  • 论文题目

    Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems
  • 作者

    Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin

  • 会议/年份

    KDD 2019

  • 链接

    http://export.arxiv.org/abs/1902.05570

  • Abstract

    Recommender systems play a crucial role in our daily lives. Feed streaming mechanism has been widely used in the recommender system, especially on the mobile Apps. The feed streaming setting provides users the interactive manner of recommendation in never-ending feeds. In such an interactive manner, a good recommender system should pay more attention to user stickiness, which is far beyond classical instant metrics, and typically measured by {\bf long-term user engagement}. Directly optimizing the long-term user engagement is a non-trivial problem, as the learning target is usually not available for conventional supervised learning methods. Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(\eg clicks, ordering) and delayed feedback~(\eg dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation. 

    To address these issues, in this work, we introduce a reinforcement learning framework --- FeedRec to optimize the long-term user engagement. FeedRec includes two components: 1)~a Q-Network which designed in hierarchical LSTM takes charge of modeling complex user behaviors, and 2)~an S-Network, which simulates the environment, assists the Q-Network and voids the instability of convergence in policy learning. Extensive experiments on synthetic data and a real-world large scale data show that FeedRec effectively optimizes the long-term user engagement and outperforms state-of-the-arts.

    推荐理由

    本文是清华大学和京东发表于 KDD 2019 的工作。论文针对利用强化学习解决推荐系统时存在用户行为难以建模的问题,提出了一种新的强化学习框架 FeedRec,包括两个网络:Q 网络利用层次化 LSTM 对复杂用户行为建模,S 网络用来模拟环境,辅助和稳定 Q 网络的训练。方法在合成数据和真实数据上进行了验证,取得了 SOTA 的结果。

传送门:

论文地址:

http://export.arxiv.org/pdf/1902.05570

AMiner学术头条
AMiner学术头条

AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。系统2006年上线,吸引了全球220个国家/地区800多万独立IP访问,数据下载量230万次,年度访问量1000万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

https://www.aminer.cn/
专栏二维码
理论清华大学京东KDD 2019强化学习FeedRec
1
相关数据
推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东零售、京东物流、京东科技子集团、印尼&泰国海外合资跨境电商等核心业务。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作。

https://www.jd.com
相关技术
推荐文章
暂无评论
暂无评论~