Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Doit作者

英文教程太难啃?这里有一份TensorFlow2.0中文教程(持续更新中)

今年 3 月份,谷歌在 Tensorflow Developer Summit 2019 大会上发布 TensorFlow 2.0 Alpha 版。作为当前最为流行的深度学习框架,2.0 Alpha 版的正式发布引人关注。近两个月,网上已经出现了大量 TensorFlow 2.0 英文教程。在此文章中,机器之心为大家推荐一个持续更新的中文教程,以便大家学习。

虽然,自 TensorFlow 2.0 发布以来,我们总是能够听到「TensorFlow 2.0 就是 keras」、「说的很好,但我用 PyTorch」类似的吐槽。但毋庸置疑,TensorFlow 依然是当前最主流的深度学习框架(感兴趣的读者可查看机器之心文章:2019 年,TensorFlow 被拉下马了吗?)。

整体而言,为了吸引用户,TensorFlow 2.0 从简单、强大、可扩展三个层面进行了重新设计。特别是在简单化方面,TensorFlow 2.0 提供更简化的 API、注重 Keras、结合了 Eager execution。

过去一段时间,机器之心为大家编译介绍了部分英文教程,例如:

此文章中,机器之心为大家推荐一个持续更新的中文教程,方便大家更系统的学习、使用 TensorFlow 2.0 :

  • 知乎专栏地址:https://zhuanlan.zhihu.com/c_1091021863043624960

  • Github 项目地址:https://github.com/czy36mengfei/tensorflow2_tutorials_chinese

该教程是 NLP 爱好者 Doit 在知乎上开的一个专栏,由作者从 TensorFlow2.0 官方教程的个人学习复现笔记整理而来。作者将此教程分为了三类:TensorFlow 2.0 基础教程、TensorFlow 2.0 深度学习实践、TensorFlow 2.0 基础网络结构。

以基础教程为例,作者整理了 Keras 快速入门教程、eager 模式、Autograph 等。目前为止,该中文教程已经包含 20 多篇文章,作者还在持续更新中,感兴趣的读者可以 follow。

该中文教程当前目录

以下是作者整理的「Keras 快速入门」教程内容。

Keras 快速入门

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产。

keras 的 3 个优点: 方便用户使用、模块化和可组合、易于扩展

1. 导入 tf.keras

tensorflow2 推荐使用 keras 构建网络,常见的神经网络都包含在 keras.layer 中 (最新的 tf.keras 的版本可能和 keras 不同)

import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)

2. 构建简单模型

2.1 模型堆叠

最常见的模型类型是层的堆叠:tf.keras.Sequential 模型

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

2.2 网络配置

tf.keras.layers 中网络配置:

  • activation:设置层的激活函数。此参数由内置函数的名称指定,或指定为可调用对象。默认情况下,系统不会应用任何激活函数

  • kernel_initializer 和 bias_initializer:创建层权重(核和偏差)的初始化方案。此参数是一个名称或可调用对象,默认为 "Glorot uniform" 初始化器。

  • kernel_regularizer 和 bias_regularizer:应用层权重(核和偏差)的正则化方案,例如 L1 或 L2 正则化。默认情况下,系统不会应用正则化函数。

layers.Dense(32, activation='sigmoid')
layers.Dense(32, activation=tf.sigmoid)
layers.Dense(32, kernel_initializer='orthogonal')
layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))

3. 训练和评估

3.1 设置训练流程

构建好模型后,通过调用 compile 方法配置该模型的学习流程:

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
             loss=tf.keras.losses.categorical_crossentropy,
             metrics=[tf.keras.metrics.categorical_accuracy])

3.2 输入 Numpy 数据

import numpy as np

train_x = np.random.random((1000, 72))
train_y = np.random.random((1000, 10))

val_x = np.random.random((200, 72))
val_y = np.random.random((200, 10))

model.fit(train_x, train_y, epochs=10, batch_size=100,
          validation_data=(val_x, val_y))

3.3tf.data 输入数据

dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(32)
dataset = dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()

model.fit(dataset, epochs=10, steps_per_epoch=30,
          validation_data=val_dataset, validation_steps=3)

3.4 评估与预测

test_x = np.random.random((1000, 72))
test_y = np.random.random((1000, 10))
model.evaluate(test_x, test_y, batch_size=32)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
test_data = test_data.batch(32).repeat()
model.evaluate(test_data, steps=30)
# predict
result = model.predict(test_x, batch_size=32)
print(result)

4. 构建高级模型

4.1 函数式 api

tf.keras.Sequential 模型是层的简单堆叠,无法表示任意模型。使用 Keras 函数式 API 可以构建复杂的模型拓扑,例如:

  • 多输入模型,

  • 多输出模型,

  • 具有共享层的模型(同一层被调用多次),

  • 具有非序列数据流的模型(例如,残差连接)。

使用函数式 API 构建的模型具有以下特征:

  • 层实例可调用并返回张量

  • 输入张量和输出张量用于定义 tf.keras.Model 实例。

  • 此模型的训练方式和 Sequential 模型一样。

input_x = tf.keras.Input(shape=(72,))
hidden1 = layers.Dense(32, activation='relu')(input_x)
hidden2 = layers.Dense(16, activation='relu')(hidden1)
pred = layers.Dense(10, activation='softmax')(hidden2)

model = tf.keras.Model(inputs=input_x, outputs=pred)
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
             loss=tf.keras.losses.categorical_crossentropy,
             metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)

4.2 模型子类化

通过对 tf.keras.Model 进行子类化并定义您自己的前向传播来构建完全可自定义的模型。在 init 方法中创建层并将它们设置为类实例的属性。在 call 方法中定义前向传播

class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__(name='my_model')
        self.num_classes = num_classes
        self.layer1 = layers.Dense(32, activation='relu')
        self.layer2 = layers.Dense(num_classes, activation='softmax')
    def call(self, inputs):
        h1 = self.layer1(inputs)
        out = self.layer2(h1)
        return out

    def compute_output_shape(self, input_shape):
        shape = tf.TensorShapej(input_shape).as_list()
        shape[-1] = self.num_classes
        return tf.TensorShape(shape)

model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
             loss=tf.keras.losses.categorical_crossentropy,
             metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3 自定义层

通过对 tf.keras.layers.Layer 进行子类化并实现以下方法来创建自定义层:

  • build:创建层的权重。使用 add_weight 方法添加权重

  • call:定义前向传播。

  • compute_output_shape:指定在给定输入形状的情况下如何计算层的输出形状。或者,可以通过实现 get_config 方法和 from_config 类方法序列化层。

class MyLayer(layers.Layer):
    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(MyLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        shape = tf.TensorShape((input_shape[1], self.output_dim))
        self.kernel = self.add_weight(name='kernel1', shape=shape,
                                   initializer='uniform', trainable=True)
        super(MyLayer, self).build(input_shape)

    def call(self, inputs):
        return tf.matmul(inputs, self.kernel)

    def compute_output_shape(self, input_shape):
        shape = tf.TensorShape(input_shape).as_list()
        shape[-1] = self.output_dim
        return tf.TensorShape(shape)

    def get_config(self):
        base_config = super(MyLayer, self).get_config()
        base_config['output_dim'] = self.output_dim
        return base_config

    @classmethod
    def from_config(cls, config):
        return cls(**config)

model = tf.keras.Sequential(
[
    MyLayer(10),
    layers.Activation('softmax')
])


model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
             loss=tf.keras.losses.categorical_crossentropy,
             metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.4 回调

callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
    tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(train_x, train_y, batch_size=16, epochs=5,
         callbacks=callbacks, validation_data=(val_x, val_y))

5 保持和恢复

5.1 权重保存

model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.save_weights('./weights/model')
model.load_weights('./weights/model')
model.save_weights('./model.h5')
model.load_weights('./model.h5')

5.2 保存网络结构

# 序列化成json
import json
import pprint
json_str = model.to_json()
pprint.pprint(json.loads(json_str))
fresh_model = tf.keras.models.model_from_json(json_str)
# 保持为yaml格式  #需要提前安装pyyaml

yaml_str = model.to_yaml()
print(yaml_str)
fresh_model = tf.keras.models.model_from_yaml(yaml_str)

5.3 保存整个模型

model = tf.keras.Sequential([
  layers.Dense(10, activation='softmax', input_shape=(72,)),
  layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
model.save('all_model.h5')
model = tf.keras.models.load_model('all_model.h5')

6. 将 keras 用于 Estimator

Estimator API 用于针对分布式环境训练模型。它适用于一些行业使用场景,例如用大型数据集进行分布式训练并导出模型以用于生产

model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
                          layers.Dense(10,activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

estimator = tf.keras.estimator.model_to_estimator(model)
工程TensorFlow教程
9
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

TensorBoard技术

一个信息中心,用于显示在执行一个或多个 TensorFlow 程序期间保存的摘要信息。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

堆叠技术

堆叠泛化是一种用于最小化一个或多个泛化器的泛化误差率的方法。它通过推导泛化器相对于所提供的学习集的偏差来发挥其作用。这个推导的过程包括:在第二层中将第一层的原始泛化器对部分学习集的猜测进行泛化,以及尝试对学习集的剩余部分进行猜测,并且输出正确的结果。当与多个泛化器一起使用时,堆叠泛化可以被看作是一个交叉验证的复杂版本,利用比交叉验证更为复杂的策略来组合各个泛化器。当与单个泛化器一起使用时,堆叠泛化是一种用于估计(然后纠正)泛化器的错误的方法,该泛化器已经在特定学习集上进行了训练并被询问了特定问题。

知乎机构

知乎,中文互联网综合性内容平台,自 2010 年成立以来,知乎凭借认真、专业、友善的社区氛围,独特的产品机制,以及结构化、易获得的优质内容,聚集了中文互联网科技、商业、影视、时尚、文化等领域最具创造力的人群,已成为综合性、全品类,在诸多领域具有关键影响力的内容平台。知乎将AI广泛应用与社区,构建了人、内容之间的多元连接,提升了社区的运转效率和用户体验。知乎通过内容生产、分发,社区治理等领域的AI应用,也创造了独有的技术优势和社区AI创新样本。

zhihu.com
推荐文章
暂无评论
暂无评论~