Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

参与GeekAI 蒋思源

PyTorch最佳实践,怎样才能写出一手风格优美的代码

PyTorch是最优秀的深度学习框架之一,它简单优雅,非常适合入门。本文将介绍PyTorch的最佳实践和代码风格都是怎样的。

虽然这是一个非官方的 PyTorch 指南,但本文总结了一年多使用 PyTorch 框架的经验,尤其是用它开发深度学习相关工作的最优解决方案。请注意,我们分享的经验大多是从研究和实践角度出发的。

这是一个开发的项目,欢迎其它读者改进该文档:https://github.com/IgorSusmelj/pytorch-styleguide。

本文档主要由三个部分构成:首先,本文会简要清点 Python 中的最好装备。接着,本文会介绍一些使用 PyTorch 的技巧和建议。最后,我们分享了一些使用其它框架的见解和经验,这些框架通常帮助我们改进工作流。

清点 Python 装备

建议使用 Python 3.6 以上版本

根据我们的经验,我们推荐使用 Python 3.6 以上的版本,因为它们具有以下特性,这些特性可以使我们很容易写出简洁的代码:

  • 自 Python 3.6 以后支持「typing」模块

  • 自 Python 3.6 以后支持格式化字符串(f string)

Python 风格指南

我们试图遵循 Google 的 Python 编程风格。请参阅 Google 提供的优秀的 python 编码风格指南:

地址:https://github.com/google/styleguide/blob/gh-pages/pyguide.md。

在这里,我们会给出一个最常用命名规范小结:

集成开发环境

一般来说,我们建议使用 visual studio 或 PyCharm 这样的集成开发环境。而 VS Code 在相对轻量级的编辑器中提供语法高亮和自动补全功能,PyCharm 则拥有许多用于处理远程集群任务的高级特性。

Jupyter Notebooks VS Python 脚本

一般来说,我们建议使用 Jupyter Notebook 进行初步的探索,或尝试新的模型和代码。如果你想在更大的数据集上训练该模型,就应该使用 Python 脚本,因为在更大的数据集上,复现性更加重要。

我们推荐你采取下面的工作流程:

  • 在开始的阶段,使用 Jupyter Notebook

  • 对数据和模型进行探索

  • 在 notebook 的单元中构建你的类/方法

  • 将代码移植到 Python 脚本中

  • 在服务器上训练/部署

开发常备库

常用的程序库有:

文件组织

不要将所有的层和模型放在同一个文件中。最好的做法是将最终的网络分离到独立的文件(networks.py)中,并将层、损失函数以及各种操作保存在各自的文件中(layers.py,losses.py,ops.py)。最终得到的模型(由一个或多个网络组成)应该用该模型的名称命名(例如,yolov3.py,DCGAN.py),且引用各个模块。

主程序、单独的训练和测试脚本应该只需要导入带有模型名字的 Python 文件。

PyTorch 开发风格与技巧

我们建议将网络分解为更小的可复用的片段。一个 nn.Module 网络包含各种操作或其它构建模块。损失函数也是包含在 nn.Module 内,因此它们可以被直接整合到网络中。

继承 nn.Module 的类必须拥有一个「forward」方法,它实现了各个层或操作的前向传导。

一个 nn.module 可以通过「self.net(input)」处理输入数据。在这里直接使用了对象的「call()」方法将输入数据传递给模块。

output = self.net(input)

PyTorch 环境下的一个简单网络

使用下面的模式可以实现具有单个输入和输出的简单网络:

class ConvBlock(nn.Module):
    def __init__(self):
        super(ConvBlock, self).__init__()
        block = [nn.Conv2d(...)]
        block += [nn.ReLU()]
        block += [nn.BatchNorm2d(...)]
        self.block = nn.Sequential(*block)

    def forward(self, x):
        return self.block(x)

class SimpleNetwork(nn.Module):
    def __init__(self, num_resnet_blocks=6):
        super(SimpleNetwork, self).__init__()
        # here we add the individual layers
        layers = [ConvBlock(...)]
        for i in range(num_resnet_blocks):
            layers += [ResBlock(...)]
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        return self.net(x)

请注意以下几点:

  • 我们复用了简单的循环构建模块(如卷积块 ConvBlocks),它们由相同的循环模式(卷积、激活函数、归一化)组成,并装入独立的 nn.Module 中。

  • 我们构建了一个所需要层的列表,并最终使用「nn.Sequential()」将所有层级组合到了一个模型中。我们在 list 对象前使用「*」操作来展开它。

  • 在前向传导过程中,我们直接使用输入数据运行模型。

PyTorch 环境下的简单残差网络

class ResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(...)

    def build_conv_block(self, ...):
        conv_block = []

        conv_block += [nn.Conv2d(...),
                       norm_layer(...),
                       nn.ReLU()]
        if use_dropout:
            conv_block += [nn.Dropout(...)]

        conv_block += [nn.Conv2d(...),
                       norm_layer(...)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return ou

在这里,ResNet 模块的跳跃连接直接在前向传导过程中实现了,PyTorch 允许在前向传导过程中进行动态操作。

PyTorch 环境下的带多个输出的网络

对于有多个输出的网络(例如使用一个预训练好的 VGG 网络构建感知损失),我们使用以下模式:

class Vgg19(torch.nn.Module):
  def __init__(self, requires_grad=False):
    super(Vgg19, self).__init__()
    vgg_pretrained_features = models.vgg19(pretrained=True).features
    self.slice1 = torch.nn.Sequential()
    self.slice2 = torch.nn.Sequential()
    self.slice3 = torch.nn.Sequential()

    for x in range(7):
        self.slice1.add_module(str(x), vgg_pretrained_features[x])
    for x in range(7, 21):
        self.slice2.add_module(str(x), vgg_pretrained_features[x])
    for x in range(21, 30):
        self.slice3.add_module(str(x), vgg_pretrained_features[x])
    if not requires_grad:
        for param in self.parameters():
            param.requires_grad = False

  def forward(self, x):
    h_relu1 = self.slice1(x)
    h_relu2 = self.slice2(h_relu1)        
    h_relu3 = self.slice3(h_relu2)        
    out = [h_relu1, h_relu2, h_relu3]
    return out

请注意以下几点:

  • 我们使用由「torchvision」包提供的预训练模型

  • 我们将一个网络切分成三个模块,每个模块由预训练模型中的层组成

  • 我们通过设置「requires_grad = False」来固定网络权重

  • 我们返回一个带有三个模块输出的 list

自定义损失函数

即使 PyTorch 已经具有了大量标准损失函数,你有时也可能需要创建自己的损失函数。为了做到这一点,你需要创建一个独立的「losses.py」文件,并且通过扩展「nn.Module」创建你的自定义损失函数

class CustomLoss(torch.nn.Module):

    def __init__(self):
        super(CustomLoss,self).__init__()

    def forward(self,x,y):
        loss = torch.mean((x - y)**2)
        return loss

训练模型的最佳代码结构

对于训练的最佳代码结构,我们需要使用以下两种模式:

  • 使用 prefetch_generator 中的 BackgroundGenerator 来加载下一个批量数据

  • 使用 tqdm 监控训练过程,并展示计算效率,这能帮助我们找到数据加载流程中的瓶颈

# import statements
import torch
import torch.nn as nn
from torch.utils import data
...

# set flags / seeds
torch.backends.cudnn.benchmark = True
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed(1)
...

# Start with main code
if __name__ == '__main__':
    # argparse for additional flags for experiment
    parser = argparse.ArgumentParser(description="Train a network for ...")
    ...
    opt = parser.parse_args() 

    # add code for datasets (we always use train and validation/ test set)
    data_transforms = transforms.Compose([
        transforms.Resize((opt.img_size, opt.img_size)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    train_dataset = datasets.ImageFolder(
        root=os.path.join(opt.path_to_data, "train"),
        transform=data_transforms)
    train_data_loader = data.DataLoader(train_dataset, ...)

    test_dataset = datasets.ImageFolder(
        root=os.path.join(opt.path_to_data, "test"),
        transform=data_transforms)
    test_data_loader = data.DataLoader(test_dataset ...)
    ...

    # instantiate network (which has been imported from *networks.py*)
    net = MyNetwork(...)
    ...

    # create losses (criterion in pytorch)
    criterion_L1 = torch.nn.L1Loss()
    ...

    # if running on GPU and we want to use cuda move model there
    use_cuda = torch.cuda.is_available()
    if use_cuda:
        net = net.cuda()
        ...

    # create optimizers
    optim = torch.optim.Adam(net.parameters(), lr=opt.lr)
    ...

    # load checkpoint if needed/ wanted
    start_n_iter = 0
    start_epoch = 0
    if opt.resume:
        ckpt = load_checkpoint(opt.path_to_checkpoint) # custom method for loading last checkpoint
        net.load_state_dict(ckpt['net'])
        start_epoch = ckpt['epoch']
        start_n_iter = ckpt['n_iter']
        optim.load_state_dict(ckpt['optim'])
        print("last checkpoint restored")
        ...

    # if we want to run experiment on multiple GPUs we move the models there
    net = torch.nn.DataParallel(net)
    ...

    # typically we use tensorboardX to keep track of experiments
    writer = SummaryWriter(...)

    # now we start the main loop
    n_iter = start_n_iter
    for epoch in range(start_epoch, opt.epochs):
        # set models to train mode
        net.train()
        ...

        # use prefetch_generator and tqdm for iterating through data
        pbar = tqdm(enumerate(BackgroundGenerator(train_data_loader, ...)),
                    total=len(train_data_loader))
        start_time = time.time()

        # for loop going through dataset
        for i, data in pbar:
            # data preparation
            img, label = data
            if use_cuda:
                img = img.cuda()
                label = label.cuda()
            ...

            # It's very good practice to keep track of preparation time and computation time using tqdm to find any issues in your dataloader
            prepare_time = start_time-time.time()

            # forward and backward pass
            optim.zero_grad()
            ...
            loss.backward()
            optim.step()
            ...

            # udpate tensorboardX
            writer.add_scalar(..., n_iter)
            ...

            # compute computation time and *compute_efficiency*
            process_time = start_time-time.time()-prepare_time
            pbar.set_description("Compute efficiency: {:.2f}, epoch: {}/{}:".format(
                process_time/(process_time+prepare_time), epoch, opt.epochs))
            start_time = time.time()

        # maybe do a test pass every x epochs
        if epoch % x == x-1:
            # bring models to evaluation mode
            net.eval()
            ...
            #do some tests
            pbar = tqdm(enumerate(BackgroundGenerator(test_data_loader, ...)),
                    total=len(test_data_loader)) 
            for i, data in pbar:
                ...

            # save checkpoint if needed
            ...

PyTorch 的多 GPU 训练

PyTorch 中有两种使用多 GPU 进行训练的模式。

根据我们的经验,这两种模式都是有效的。然而,第一种方法得到的结果更好、需要的代码更少。由于第二种方法中的 GPU 间的通信更少,似乎具有轻微的性能优势。

对每个网络输入的 batch 进行切分

最常见的一种做法是直接将所有网络的输入切分为不同的批量数据,并分配给各个 GPU。

这样一来,在 1 个 GPU 上运行批量大小为 64 的模型,在 2 个 GPU 上运行时,每个 batch 的大小就变成了 32。这个过程可以使用「nn.DataParallel(model)」包装器自动完成。

将所有网络打包到一个超级网络中,并对输入 batch 进行切分

这种模式不太常用。下面的代码仓库向大家展示了 Nvidia 实现的 pix2pixHD,它有这种方法的实现。

地址:https://github.com/NVIDIA/pix2pixHD

PyTorch 中该做和不该做的

在「nn.Module」的「forward」方法中避免使用 Numpy 代码

Numpy 是在 CPU 上运行的,它比 torch 的代码运行得要慢一些。由于 torch 的开发思路与 numpy 相似,所以大多数 Numpy 中的函数已经在 PyTorch 中得到了支持。

将「DataLoader」从主程序的代码中分离

载入数据的工作流程应该独立于你的主训练程序代码。PyTorch 使用「background」进程更加高效地载入数据,而不会干扰到主训练进程。

不要在每一步中都记录结果

通常而言,我们要训练我们的模型好几千步。因此,为了减小计算开销,每隔 n 步对损失和其它的计算结果进行记录就足够了。尤其是,在训练过程中将中间结果保存成图像,这种开销是非常大的。

使用命令行参数

使用命令行参数设置代码执行时使用的参数(batch 的大小、学习率等)非常方便。一个简单的实验参数跟踪方法,即直接把从「parse_args」接收到的字典(dict 数据)打印出来:

# saves arguments to config.txt file
opt = parser.parse_args()with open("config.txt", "w") as f:
    f.write(opt.__str__())

如果可能的话,请使用「Use .detach()」从计算图中释放张量

为了实现自动微分,PyTorch 会跟踪所有涉及张量的操作。请使用「.detach()」来防止记录不必要的操作。

使用「.item()」打印出标量张量

你可以直接打印变量。然而,我们建议你使用「variable.detach()」或「variable.item()」。在早期版本的 PyTorch(< 0.4)中,你必须使用「.data」访问变量中的张量值。

使用「call」方法代替「nn.Module」中的「forward」方法

这两种方式并不完全相同,正如下面的 GitHub 问题单所指出的:https://github.com/IgorSusmelj/pytorch-styleguide/issues/3 

output = self.net.forward(input)
# they are not equal!
output = self.net(input)

原文链接:https://github.com/IgorSusmelj/pytorch-styleguide

入门PyTorch
12
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

Dropout技术

神经网络训练中防止过拟合的一种技术

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

VGG技术

2014年,牛津大学提出了另一种深度卷积网络VGG-Net,它相比于AlexNet有更小的卷积核和更深的层级。AlexNet前面几层用了11×11和5×5的卷积核以在图像上获取更大的感受野,而VGG采用更小的卷积核与更深的网络提升参数效率。VGG-Net 的泛化性能较好,常用于图像特征的抽取目标检测候选框生成等。VGG最大的问题就在于参数数量,VGG-19基本上是参数量最多的卷积网络架构。VGG-Net的参数主要出现在后面两个全连接层,每一层都有4096个神经元,可想而至这之间的参数会有多么庞大。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

学习率技术

在使用不同优化器(例如随机梯度下降,Adam)神经网络相关训练中,学习速率作为一个超参数控制了权重更新的幅度,以及训练的速度和精度。学习速率太大容易导致目标(代价)函数波动较大从而难以找到最优,而弱学习速率设置太小,则会导致收敛过慢耗时太长

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

Jupyter技术

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。

推荐文章
暂无评论
暂无评论~