Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Hans Fangohr作者林亦霖校对王菁 编辑顾宇华翻译

我们为你精选了一份Jupyter/IPython笔记本集合 !(附大量资源链接)-上篇

本文介绍了一些有趣的Jupyter/IPython笔记本。

目录

1. 针对某个主题的书籍或其他笔记本大集合

  • 入门教程

  • 编程与计算机科学

  • 统计学,机器学习数据科学

  • 数学,物理,化学,生物学

  • 地球科学和地理空间数据

  • 语言学文本挖掘

  • 信号处理

  • 工程教育

2. 使用SciPy Stack进行科学计算和数据分析

  • 科学计算的一般主题

  • 社交数据

  • 心理学和神经科学

  • 机器学习,统计和概率

  • 物理,化学和生物学

  • 经济与金融

  • 地球科学和地理空间数据

  • 数据可视化和绘图

  • 数学

  • 信号,声音和图像处理

  • 自然语言处理

  • 用于数据分析的Pandas

3. 一般Python编程

4. 除Python以外的其他语言的笔记本

  • Julia

  • Haskell

  • Ruby

  • Perl

  • F#

  • C#

  • Javascript

5. 使用笔记本本身做不同事情的各种各样的主题

6. 可重现的学术出版物

7. 数据为主的新闻

8. 异想天开的笔记本

9. 在自然环境下被使用的IPython视频

10. 通过笔记本访问IBM量子计算

注:5—10在下篇。

1. 针对某个主题的整本书籍或其他笔记本大集合

  • 入门教程

首先,如何在笔记本中运行代码。这里面还有IPython 的一系列笔记本合集。这个系列中关于丰富的显示系统的解释也十分有用。

在笔记本中运行代码

https://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Running%20Code.ipynb

一个很棒的matplotlib教程,是JR Johansson 使用Python进行科学计算的精彩讲座的一部分。

matplotlib教程

https://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb

使用Python进行科学计算

https://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/tree/master/

C. Rossant 的IPython迷你书的代码,介绍了用于交互式计算和数据可视化的IPython,NumPy,SciPy,Pandas和matplotlib。

IPython迷你书

https://github.com/rossant/ipython-minibook

由Rajath Kumar MP撰写的《Python指南》(Python Tutorial)。

《Python指南》

https://github.com/rajathkmp/Python-Lectures

  • 编程与计算机科学

使用Jupyter的自动机和可计算性,整个课程是基于Taylor和Francis即将出版的书; 书名:“Automata and Computability:Programmer's Perspective”,作者:Ganesh Gopalakrishnan,盐湖城犹他大学计算机学院教授。[英文书,有Youtube视频]

使用Jupyter的自动机和可计算性

https://nbviewer.jupyter.org/github/ganeshutah/Jove/blob/master/notebooks/driver/Drive_Jove_Gallery_Examples.ipynb

编程简介(使用Python)(Introduction to Programming (using Python)),这是由Eric Matthes编写的完整的Python入门课程。这篇文章介绍了Eric任职的阿拉斯加高中的教育背景。

编程简介(使用Python)(Introduction to Programming (using Python))

https://nbviewer.jupyter.org/github/ehmatthes/intro_programming/blob/master/notebooks/index.ipynb

Eric Matthes

https://peak5390.wordpress.com/about/

这篇文章

https://peak5390.wordpress.com/2013/09/22/how-ipython-notebook-and-github-have-changed-the-way-i-teach-python/

数字计算很有趣。创建这一系列笔记本旨在帮助教育有抱负的计算机程序员和所有年龄段的没有编程经验的数据科学家。

数字计算很有趣

https://github.com/eka-foundation/numerical-computing-is-fun

《Python for Developers》,Ricardo Duarte编写的一本关于Python编程的完整书籍。此书籍也包含葡萄牙语版本。

《Python for Developers》

http://ricardoduarte.github.io/python-for-developers

Ricardo Duarte

https://github.com/ricardoduarte

葡萄牙语版本

http://ricardoduarte.github.io/python-para-desenvolvedores

CS1001.py - 计算机科学概论。特拉维夫大学的计算机科学入门课程,由Yoav Ram组组合为IPython笔记本。

CS1001.py - 计算机科学概论

https://github.com/yoavram/CS1001.py

Yoav Ram

http://www.yoavram.com/

使用Python进行探索性计算,这是一套涵盖探索性计算,数据分析和可视化的15本笔记本。无需编程经验。每个笔记本包含一些练习(带答案),所需时间不到4小时。由Mark Bakker为代尔夫特理工大学的本科工程专业学生开发。

使用Python进行探索性计算

http://mbakker7.github.io/exploratory_computing_with_python/

了解进化策略协方差矩阵适应,来自Luis Martí的高级进化计算的理论与实践课程。

了解进化策略协方差矩阵适应

https://nbviewer.jupyter.org/github/lmarti/evolutionary-computation-course/blob/master/AEC.04%20-%20Evolutionary%20Strategies%20and%20Covariance%20Matrix%20Adaptation.ipynb

高级进化计算的理论与实践课程

https://nbviewer.jupyter.org/github/lmarti/evolutionary-computation-course/tree/master/

用Python编写Katas,包括搜索和排序算法,堆栈,队列,链表,图形,回溯和贪婪问题的算法和数据结构练习的集合。

用Python编写Katas

https://github.com/gudnm/codekatas

在剑桥大学工程学院的计算机课程(Michaelmas Term)Part IA的Jupyter笔记本活动,Garth Wells。

在剑桥大学工程学院的计算机课程(Michaelmas Term)Part IA的Jupyter笔记本活动

https://notebooks.azure.com/null/projects/null

《用于计算科学与工程的Python简介(Hans Fangohr)》:初学者教材,每章分为一个Jupyter笔记本。可以使用Binder在线执行和交互。

《用于计算科学与工程的Python简介(Hans Fangohr)》

https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering/blob/master/Readme.md

在线执行和交互

https://mybinder.org/v2/gh/fangohr/introduction-to-python-for-computational-science-and-engineering/master?filepath=index.ipynb

  • 统计学,机器学习数据科学

由Leif Rune Hellevik,Vinzenz Eck和Jacob T. Sturdy 为心血管建模的不确定性量化和灵敏度分析研讨会开发的关于不确定性量化和灵敏度分析的介绍性笔记本。

心血管建模的不确定性量化和灵敏度分析研讨会

http://sathercenter.berkeley.edu/peder-sather-grant/2016-grantees/

不确定性量化和灵敏度分析的介绍性笔记本

https://nbviewer.jupyter.org/github/lrhgit/uqsa_tutorials/blob/master/index.ipynb

Python数据科学手册补充材料,由Jake VanderPlas撰写的配合书本教学内容的笔记本集合。

Python数据科学手册补充材料

https://github.com/jakevdp/PythonDataScienceHandbook

“ISP”:Introduction to Statistics with Python,一个笔记本合集,配合由Thomas Haslwanter的同名书

“ISP”:Introduction to Statistics with Python

https://github.com/thomas-haslwanter/statsintro_python

John Wittenauer 的,关于Andrew Ng的在线ML课程,Spark和TensorFlow的练习笔记本,以及来自scipy堆栈的其他工具的额外材料。

关于Andrew Ng的在线ML课程,Spark和TensorFlow的练习笔记本

https://github.com/jdwittenauer/ipython-notebooks

AM207:蒙特卡罗方法随机优化:来自哈佛大学的Verena Kaynig-Fittkau和Pavlos Protopapas的完整课程,所有讲座材料和家庭作业都被整合为笔记本。

AM207:蒙特卡罗方法随机优化

http://am207.github.io/2016/

贝叶斯推理的介绍,这只是由Cameron Davidson-Pilon正在撰写的书的第一章:使用为黑客设计的Python和PyMC概率编程和贝叶斯方法(Probabilistic Programming and Bayesian Methods for Hackers Using Python and PyMC)。

贝叶斯推理的介绍

http://nbviewer.jupyter.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Ch1_Introduction_PyMC3.ipynb

贝叶斯数据分析:用于选择模型和图形的Python / PyMC3代码,来自John Kruschke(2015)出版的“做贝叶斯数据分析:R,JAGS和Stan的教程”第二版。

贝叶斯数据分析

https://github.com/JWarmenhoven/DBDA-python

学习数据科学,这是Nitin Borwankar的完全自学课程。

学习数据科学

http://learnds.com/

Cyrille Rossant的IPython Cookbook,Python数据科学综合指南。GitHub存储库中提供了100个代码。

GitHub存储库

https://github.com/ipython-books/cookbook-code

Hannes Schulz和Andreas Mueller 的介绍使用Python和scikit-learn(repo和overview)的机器学习

介绍使用Python和scikit-learn(repo和overview)的机器学习

https://nbviewer.jupyter.org/github/temporaer/tutorial_ml_gkbionics/blob/master/2%20-%20KMeans.ipynb

都灵大学机器学习课程的进阶笔记本合集(附练习)。

都灵大学机器学习课程的进阶笔记本合集(附练习)

https://github.com/rugantio/MachineLearningCourse

聚类和回归,是Michael Franklin教授的加州大学伯克利分校2014年数据科学入门课程的一部分。

聚类和回归

https://nbviewer.jupyter.org/github/amplab/datascience-sp14/blob/master/hw2/HW2.ipynb

据科学入门课程

http://amplab.github.io/datascience-sp14/

神经网络,是Aaron Masino 机器学习系列的一部分。

神经网络https://nbviewer.jupyter.org/github/masinoa/machine_learning/blob/master/04_Neural_Networks.ipynb

Pandas介绍,由HernánRojas撰写的关于Pandas的11节课教程的一部分。

撰写的关于Pandas的11节课

https://bitbucket.org/hrojas/learn-pandas

Steve Phelps的使用Python的数据科学大数据

使用Python的数据科学大数据

https://github.com/phelps-sg/python-bigdata/blob/master/README.md

该Statsmodels项目有两个优秀的的例子集合:在他们的官方文档和wiki中另一个文档中。那里有太多要直接复制的内容,但它们提供了有关Python统计建模的优秀学习资料。

Statsmodels

http://www.statsmodels.org/stable/index.html

官方文档

http://www.statsmodels.org/devel/examples/index.html

使用Shogun工具箱进行机器学习。这是一个完整的服务,包括一个可立即运行的包含一系列笔记本的IPython实例,说明了Shogun工具箱的使用。只需登录并开始运行示例。

Shogun

http://shogun-toolbox.org/

Python for Data Analysis,来自CU Boulder Research Computing Group的入门系列。

Python for Data Analysis

https://github.com/ResearchComputing/Meetup-Fall-2013

CU Boulder Research Computing Group

http://researchcomputing.github.io/

Kaggle bulldozers竞赛示例,由Daniel Rodríguez开发的使用copper toolkit的探索性数据分析教程之一。

理解模型可靠性,是Michael Waskom 的为心理学家进行统计和数据分析的完整课程的一部分。

理解模型可靠性https://nbviewer.jupyter.org/github/mwaskom/Psych216/blob/master/week6_tutorial.ipynb

线性模型的图形表示,Seaborn统计可视化库的图示,还包括可视化数据分布和表示时间序列图中的可变性。由Micheal·Waskom撰写。

Desperately Seeking Silver,哈佛大学CS 109数据科学课程的家庭作业之一。

Desperately Seeking Silver

https://nbviewer.jupyter.org/github/cs109/content/blob/master/HW2.ipynb

James,Witten,Hastie,Tibshirani(2013)的经典的“R的应用程序的统计学习简介”中,除了本书的默认R示例之外,还有一本笔记本。一个由Jordi Warmenhoven撰写,另一个由Matt Caudill撰写。

“R的应用程序的统计学习简介”

http://www-bcf.usc.edu/~gareth/ISL/

StatLearning练习的Python笔记本,用于StatLearning的R实验室的Python实现:来自斯坦福大学的统计学习在线课程,由Trevor Hastie教授和Rob Tibshirani教授。

StatLearning练习的Python笔记本

https://github.com/sujitpal/statlearning-notebooks

使用Python的应用预测建模,来自Max Kuhn和Kjell Johnson 着名的入门书籍Applied Predictive Modeling的 Python实例(最初用R编写)。

使用Python的应用预测建模

https://nbviewer.jupyter.org/github/leig/Applied-Predictive-Modeling-with-Python/tree/master/notebooks/

来自哥伦比亚大学Lede计划的多个教师的数据科学,算法和数据库基础的四门课程合集。

计划的多个教师的数据科学,算法和数据库基础的四门课程

https://nbviewer.jupyter.org/github/ledeprogram/courses/tree/master/

SciPy和OpenCV作为计算机视觉的交互式计算环境,由Thiago Santos提供,这是一个在2014年SIBGRAPI上发布的教程。

SciPy和OpenCV作为计算机视觉的交互式计算环境

https://nbviewer.jupyter.org/github/thsant/scipy4cv/tree/master/

Python的卡尔曼和贝叶斯过滤器,由Roger Labbe提供。

Python的卡尔曼和贝叶斯过滤器

https://nbviewer.jupyter.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb

由Shashwat Shukla提供的 进行数字分类的Adaboost。在Python中完整实现Adaboost,带有数字识别代码。

进行数字分类的Adaboost

https://nbviewer.jupyter.org/github/riddhishb/ipython-notebooks/blob/master/Adaboost/Adaboost_Final%20note.ipynb

一个机器学习笔记本,由Randal. S. Olson提供,是数据分析机器学习系列的一部分。

一个机器学习笔记本

https://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb

Pandas .head() to .tail(),由Tom Augspurger撰写的关于Pandas的深度教程。

Apache SINGA教程。使用SINGA进行深度学习的Python教程。

Apache SINGA教程

https://nbviewer.jupyter.org/github/apache/incubator-singa/blob/master/doc/en/docs/notebook/index.ipynb

数据科学笔记本,由Donne Martin经常更新的统计推断,数据分析,可视化和机器学习笔记本。

数据科学笔记本

https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/README.md

ETL with Python,ETL(Extract,Transfer和Load)教程,使用python petl包,加载到MySQL并使用csv文件,由Dima Goldenberg提供。

ETL with Python

https://github.com/dimgold/ETL_with_Python/blob/master/README.md

  • 数学,物理,化学,生物学

单原子激光模型。这是使用JR Johansson的使用QuTiP的关于量子力学和量子光学的完整讲座之一。

单原子激光模型

https://nbviewer.jupyter.org/github/jrjohansson/qutip-lectures/blob/master/Lecture-2B-Single-Atom-Lasing.ipynb

二维刚体转换。这是生物力学和电机控制中的科学计算的一部分,这是由Marcos Duarte撰写的完整的笔记本系列。

二维刚体转换

https://nbviewer.jupyter.org/github/demotu/BMC/blob/master/notebooks/Transformation2D.ipynb

使用yt的天体物理模拟和分析:使用各种与yt的接口代码的示例笔记本集合:Enzo,Gadget,RAMSES,PKDGrav和Gasoline。注意:yt抛出了一个ssl警告,似乎是由于一个过期的或自签名的认证。

Working with Reactions,rdkit项目的一系列关于化学信息学和机器学习的教程的一部分,由Greg Landrum提供。

Working with Reactions

https://nbviewer.jupyter.org/gist/greglandrum/4316430

CFD Python:Navier-Stokes的12个步骤。Lorena Barba的一套完整的计算流体动力学讲座,从一维线性波到完整的二维Navier-Stokes 。

CFD Python:Navier-Stokes的12个步骤

http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/

Pytherm - 应用热力学。ATOMS使用Python和SciPy生态系统讲授的应用热力学。

Pytherm - 应用热力学

https://nbviewer.jupyter.org/github/iurisegtovich/PyTherm-applied-thermodynamics/blob/master/index.ipynb

AeroPython:使用Python进行空气动力学 - 流体动力学,这是由乔治华盛顿大学Lorena Barba教授的完整课程。

AeroPython:使用Python进行空气动力学 - 流体动力学

https://github.com/barbagroup/AeroPython

Python实用数值方法,一系列学习模型(每个由几本IPython笔记本组成),用于由乔治华盛顿大学Lorena Barba教授的数值微分方程课程。还在GW SEAS Open edX平台上提供“大规模,开放式在线课程”(MOOC)。

Python实用数值方法

https://github.com/numerical-mooc/numerical-mooc

pyuvvis:用于探索光谱学的工具,用于集成ipython笔记本,matplotlib和pandas的光谱库。

pyuvvis:用于探索光谱学的工具

https://github.com/hugadams/pyuvvis

HyperPython:双曲线守恒定律解决方案的实用介绍,David Ketcheson的课程。

HyperPython:双曲线守恒定律解决方案的实用介绍

https://nbviewer.jupyter.org/github/ketch/HyperPython/tree/master/

应用生物信息学概论:生物信息学的互动课程,由Greg Caporaso撰写。

应用生物信息学概论

http://readiab.org/

颜色科学计算与颜色,一个Python包实现的支持的色彩理论转换和算法的IPython的笔记本专用的合集。更多与颜色科学相关的IPython笔记本可在colour-science.org上找到。

IPython的笔记本

https://nbviewer.jupyter.org/github/colour-science/colour-ipython/blob/master/notebooks/colour.ipynb

来自Book Bioinformatics with Python Cookbook的笔记本,涵盖了下一代测序,群体遗传学,系统发育学,基因组学,蛋白质组学和地理参考信息等几个领域。

学习群体RNA世界中的遗传学是一种交互式笔记本,通过构建RNA分子的计算机进化模型来解释基本的群体遗传学工具和技术。

学习群体RNA世界中的遗传学

https://nbviewer.jupyter.org/github/gocarli/RNA-Popgen-Notebook/blob/master/Population_Genetics.ipynb

一个开放的RNA-Seq数据分析管道教程,其中有一个例子,用于重新处理最近的Zika病毒研究数据。这款笔记本完全再现了本文发表的研究成果。该笔记本主要使用python但包括一些bash和R,并且与生物信息学和公共卫生领域的研究人员相关。

一个开放的RNA-Seq数据分析管道教程

https://nbviewer.jupyter.org/github/maayanlab/Zika-RNAseq-Pipeline/blob/master/Zika.ipynb

本文

https://f1000research.com/articles/5-1574/v1

肺癌翻译后修饰和基因表达调控。这个Python笔记本使用Jupyter-widget Clustergrammer-Widget作为交互式热图来显示来自37个肺癌细胞系的基因表达和翻译后修饰数据的层次聚类。笔记本是本文研究项目的一部分。

肺癌翻译后修饰和基因表达调控

https://nbviewer.jupyter.org/github/MaayanLab/CST_Lung_Cancer_Viz/blob/master/notebooks/CST_Data_Viz.ipynb?flush_cache=true

Python中使用pymatgen的材料科学。一系列关于材料科学的python笔记本使用pymatgen包和材料项目 API。

Python中使用pymatgen的材料科学

http://matgenb.materialsvirtuallab.org/

  • 地球科学和地理空间数据

EarthPy,一系列关于地球科学的IPython笔记本,从鲸鱼轨道到亚马逊流。

EarthPy

http://earthpy.org/

Python for Geosciences是一个针对地球科学界的教程系列,由Nikolay Koldunov撰写。

Python for Geosciences

https://github.com/koldunovn/python_for_geosciences

查看纽约地铁入口附近的涂鸦,这是关于大量数据分析的丰富笔记本之一的笔记本,由Roy Hyunjin Han撰写。

大量数据分析的丰富笔记本

https://github.com/invisibleroads/analytical-tutorials

Logistic models of well switching in Bangladesh,它是关于机器学习和Python数据分析的“Will it Python”博客系列的一部分。作者:Carl Vogel。

Logistic models of well switching in Bangladesh

http://nbviewer.ipython.org/github/carljv/Will_it_Python/blob/master/ARM/ch5/arsenic_wells_switching.ipynb

估计在大陆低角度正常断层上观测大地震的可能性以及对低角度正常断层活动的影响,Richard Styron和Eric Hetland在地球物理研究快报上发表的关于地震概率的论文的可执行版本。

估计在大陆低角度正常断层上观测大地震的可能性以及对低角度正常断层活动的影响

https://nbviewer.jupyter.org/github/cossatot/lanf_earthquake_likelihood/blob/master/notebooks/lanf_manuscript_notebook.ipynb

python4oceanographers,一个博客展示了物理海洋学中的分析,从资源需求的数值计算,编译语言中的功能到专门的潮汐分析,使用交互式地图等奇特的东西可视化各种地理数据。

python4oceanographers

https://ocefpaf.github.io/python4oceanographers/

Machinalis有一个公共报告,为地理空间数据处理相关的博客文章提供物质支持。它包括有关基于对象的图像分析和灌溉圈检测的笔记本。

报告

https://github.com/machinalis/satimg

seismo-live是用于地震学的Jupyter笔记本集合。它包含了相当多的关于如何用各种不同的数值方法求解声波和弹性波方程的笔记本。此外,它还包含对地震学中数据处理和信号处理的广泛介绍的笔记本,以及处理环境地震噪声,旋转和冰川地震等的笔记本。

seismo-live

http://seismo-live.org/

Geo-Python是对芬兰赫尔辛基大学地球科学和地理系成员讲授的地理学(地质学,地球物理学,地理学)学士和硕士学生的Python编程的介绍。课程和练习基于Jupyter笔记本,并且可供任何感兴趣的人使用。

Geo-Python

https://geo-python.github.io/2018/

  • 语言学文本挖掘

文本分析的研讨会,由Neal Caren专讲。

文本分析的研讨会

https://nbviewer.jupyter.org/github/nealcaren/workshop_2014/tree/master/notebooks/

检测算法生成的域,这是与IPython & friends进行面向安全的数据分析的Data Hacking集合的一部分。

检测算法生成的域

https://nbviewer.jupyter.org/github/ClickSecurity/data_hacking/blob/master/dga_detection/DGA_Domain_Detection.ipynb

挖掘社交网络(第3版)。完整的笔记本系列,配合Matthew Russell和Mikhail Klassen的书看更好,由O'Reilly 撰写。

挖掘社交网络(第3版)

https://github.com/mikhailklassen/Mining-the-Social-Web-3rd-Edition

  • 信号处理

傅立叶变换的声音分析。Caleb Madrigal的一套IPython笔记本,用于解释傅立叶变换的内容以及如何将其用于基本音频处理应用程序。

傅立叶变换的声音分析

https://github.com/calebmadrigal/FourierTalkOSCON

压缩传感介绍,Python信息处理的一部分:Jose Unpingco撰写的关于这一主题的整本书(和博客)。

压缩传感介绍

https://nbviewer.jupyter.org/github/unpingco/Python-for-Signal-Processing/blob/master/Compressive_Sampling.ipynb

Python实现的卡尔曼和贝叶斯滤波器。关于卡尔曼滤波和其他相关贝叶斯过滤技术的教科书和附带的过滤库。

Python实现的卡尔曼和贝叶斯滤波器

https://nbviewer.jupyter.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb

使用动态时间扭曲和K最近邻居对人体运动进行分类:来自智能手机陀螺仪和加速度计的信号用于分类人是否正在跑步、行走、坐着等。这个IPython笔记本包含一个python实现的DTW和KNN算法的解释和实际应用。

使用动态时间扭曲和K最近邻居对人体运动进行分类

https://nbviewer.jupyter.org/github/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb

数字信号处理一系列笔记本,附有关于该主题的硕士课程。

数字信号处理一系列笔记本

https://github.com/spatialaudio/digital-signal-processing-lecture

openCV介绍,在python中使用openCV进行计算机视觉的入门课程。

openCV介绍

https://github.com/handee/opencv-gettingstarted

  • 工程教育

Jeff Kantor的化学工程分析介绍。一系列IPython笔记本,介绍了化学工程分析的主题,包括化学计量学,发电消耗分析,质量和能量平衡。

化学工程分析介绍

http://jckantor.github.io/CBE20255/

Andres Marrugo的传感器和执行器。以课程笔记和工程计算的形式的Jupyter笔记本的集合,关于Universidad Tecnológica de Bolívar的IMTR 1713传感器和执行器课程。

传感器和执行器

https://github.com/agmarrugo/sensors-actuators

使用SciPy Stack进行科学计算和数据分析

  • 科学计算的一般主题

IPython笔记中的算法,由Sebastian Raschka撰写。

IPython笔记中的算法

https://github.com/rasbt/algorithms_in_ipython_notebooks

比较Python的编译器的性能- Cythons vs. Numba vs. Parakeet,由Sebastian Raschka撰写。

比较Python的编译器的性能- Cythons vs. Numba vs. Parakeet

https://nbviewer.jupyter.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb

Sandia的Rick Muller撰写的Python科学家速成课程。

Python科学家速成课程

https://nbviewer.jupyter.org/gist/rpmuller/5920182

一个温柔的介绍Python中的科学的编程,偏重生物学家,由Mickey Atwal撰写,来自冷泉港实验室。

一个温柔的介绍Python中的科学的编程

https://nbviewer.jupyter.org/url/atwallab.cshl.edu/teaching/QBbootcamp3.ipynb

Python for Data Science是一个由 Joe McCarthy设计的带有练习的独立迷你课程。

Python for Data Science

https://nbviewer.jupyter.org/github/gumption/Python_for_Data_Science/blob/master/Python_for_Data_Science_all.ipynb

关于数据分析的UW / Coursera课程的前几个讲座。(报告)由Chris Fonnesbeck撰写。

关于数据分析的UW / Coursera课程的前几个讲座

https://nbviewer.jupyter.org/github/fonnesbeck/ComputationalMethodsCourse/blob/master/Lecture%201.ipynb

报告

https://github.com/fonnesbeck/ComputationalMethodsCourse

CythonGSL:GNU科学图书馆(GSL)的Cython接口(项目报告),由Thomas Wiecki撰写。

CythonGSL:GNU科学图书馆(GSL)的Cython接口

https://nbviewer.jupyter.org/github/twiecki/CythonGSL/blob/master/examples/cython_gsl_ipythonnb.ipynb

numpy的数值计算简介,由Steve Phelps撰写。

numpy的数值计算简介

https://nbviewer.jupyter.org/github/phelps-sg/python-bigdata/blob/master/src/main/ipynb/numerical-slides.ipynb

使用Numba加速数字代码。另一个Numba例子:自组织映射

使用Numba加速数字代码

https://nbviewer.jupyter.org/gist/Juanlu001/3914904

NumPy的表现技巧和博客文章,用Cyrille Rossant撰写。

NumPy的表现技巧

https://nbviewer.jupyter.org/gist/rossant/4645217

博客文章

https://cyrille.rossant.net/numpy-performance-tricks/

Justin Riley的IPython并行推/执行/拉动演示。

IPython并行推/执行/拉动演示

https://nbviewer.jupyter.org/gist/jtriley/3866987

理解对R“公式”对象的设计,由Matthew Brett撰写。

理解对R“公式”对象的设计

https://nbviewer.jupyter.org/url/perrin.dynevor.org/exploring_r_formula.ipynb

比较进化模拟的不同方法。此处可用于更好的阅读。使用旧的nbconvert和第一个开发的reveal转换器实现将笔记本转换为HTML演示文稿。由Yoav Ram撰写。

此处

https://mp.weixin.qq.com/cgi-bin/appmsg?t=media/appmsg_edit&action=edit&type=10&appmsgid=100011380&isMul=1&token=231318955&lang=zh_CN#/

旅行商问题,由Peter Norving撰写。

旅行商问题

https://nbviewer.jupyter.org/url/norvig.com/ipython/TSP.ipynb

Fernando Perez 的针对科学家的git教程。

针对科学家的git教程

https://nbviewer.jupyter.org/github/fperez/reprosw/blob/master/Version%20Control.ipynb

使用pymatbridge 在IPython Notebook中运行MATLAB。

交互式曲线拟合,该lmfit软件包为SciPy中的曲线拟合算法提供基于小部件的界面。

交互式曲线拟合

https://nbviewer.jupyter.org/gist/danielballan/1c2db3d4f2f7780cf52f

Jeff Thompson 撰写的为分布式计算提供Python Spark API的可视指南。

撰写的为分布式计算提供Python Spark API的可视指南

https://nbviewer.jupyter.org/github/jkthompson/pyspark-pictures/blob/master/pyspark-pictures.ipynb

由Steve Phelps撰写的关于使用Apache Spark和Python进行Map-Reduce编程的教程。

关于使用Apache Spark和Python进行Map-Reduce编程的教程。

https://nbviewer.jupyter.org/github/phelps-sg/python-bigdata/blob/master/src/main/ipynb/spark-mapreduce.ipynb

CodeCombat gridmancer求解器由Arn-O提供。这个笔记本解释了如何使用启发式函数改进递归树搜索,并找到gridmancer的最小解决方案。

  • 社交数据

生存分析,生命线图书馆的插图,由Cam Davidson Pilon提供。

由Skipper Seabold提供的(完整报告)重建2012年美国总统选举的Nate Silver的538模型。

2012年美国总统选举的Nate Silver的538模型

https://nbviewer.jupyter.org/github/jseabold/538model/blob/master/silver_model.ipynb

关于新城,Conneticut的桑迪胡克大屠杀的数据,附有关于该主题的更详细的博客文章。这是笔记本和附带的数据。作者:Brian Keegan。

博客文章

http://www.brianckeegan.com/2012/12/sandy-hook-school-massacre/

更多关于维基百科数据的枪支暴力分析。

关于维基百科数据的枪支暴力分析

https://nbviewer.jupyter.org/gist/minrk/4358066

对加沙 - 以色列2012年危机的分析。

对加沙 - 以色列2012年危机的分析

https://nbviewer.jupyter.org/gist/darribas/4121857

排名NFL球队。全部报告还包括的说明幻灯片。由Sean Taylor提供。

排名NFL球队

https://nbviewer.jupyter.org/github/seanjtaylor/NFLRanking/blob/master/NFL%20Rankings.ipynb

自动处理新闻媒体和生成相关图像。

自动处理新闻媒体和生成相关图像

https://nbviewer.jupyter.org/url/mhermans.net/files/tmp/demo_rdf_HLN.ipynb

使用熊猫分析哥伦比亚国家学校标准化测试数据(西班牙语)。作者:Javier Moreno。

使用熊猫分析哥伦比亚国家学校标准化测试数据

https://nbviewer.jupyter.org/url/finiterank.com/saber/saber.ipynb

GDELT入门,由David Masad提供。GDELT是一个包含超过2亿个地理定位事件的数据集,涵盖了1979年至今的全球覆盖范围。David的另一个GDELT示例很好地集成了映射可视化。

GDELT入门

https://nbviewer.jupyter.org/github/dmasad/GDELT_Intro/blob/master/Getting_Started_with_GDELT.ipynb

泰坦尼克号的乘客,煤矿灾害,以及船舶速度的变化,由Christopher Fonnesbeck提供。

泰坦尼克号的乘客,煤矿灾害,以及船舶速度的变化

https://nbviewer.jupyter.org/gist/fonnesbeck/8495259

2012年GDELT 对印度尼西亚冲突的地理分析,由herrfz撰写。

2012年GDELT 对印度尼西亚冲突

https://nbviewer.jupyter.org/github/herrfz/gdelt/blob/master/indn_connection.ipynb

生物信息学方法对诗歌韵律的计算,由A.Sean·Pue,C.Titus Brown和Tracy Teal提供。

生物信息学方法对诗歌韵律的计算

https://nbviewer.jupyter.org/github/asp49/meter/blob/graph/Shared%20Horizons%20Presentation.ipynb

来自巴黎的Vélib数据集的分析,由Cyrille Rossant分析(Vélib是巴黎的自行车共享计划)。

来自巴黎的Vélib数据集

https://nbviewer.jupyter.org/gist/rossant/5520933

使用Python看到时代杂志如何写男性和女性,由Neal Caren提供。

使用Python看到时代杂志如何写男性和女性

https://nbviewer.jupyter.org/gist/nealcaren/5105037

使用twython和NetworkX探索Twitter流的图形属性,由F. Perez提供(这里有实用程序完整的gist repo)。

使用twython和NetworkX探索Twitter流的图形属性

https://nbviewer.jupyter.org/gist/fperez/5681541/TwitterGraphs.ipynb

Kaggle比赛:针对灾难的泰坦尼克号机器学习。由Andrew Conti提供。

Kaggle比赛:针对灾难的泰坦尼克号机器学习

https://nbviewer.jupyter.org/github/agconti/kaggle-titanic/blob/master/Titanic.ipynb

旧金山的餐厅多么干净?一个数据科学教程和博客文章来自Zipfian学院。

旧金山的餐厅多么干净?

https://nbviewer.jupyter.org/github/Jay-Oh-eN/happy-healthy-hungry/blob/master/h3.ipynb

NYT性别工资差距和美国国家犯罪。

预测纽约市地铁系统的使用情况,这是Asim Ihsan的Udacity Intro to Data Science Course 的最终项目。

最终项目

https://blog.udacity.com/2014/05/intro-to-data-science-tools-to-ask.html

2014年世界杯决赛的探索性统计分析,由Ricardo Tavares提供。足球分析的笔记本集合的一部分。

2014年世界杯决赛的探索性统计分析

https://nbviewer.jupyter.org/github/rjtavares/football-crunching/blob/master/notebooks/an%20exploratory%20data%20analysis%20of%20the%20world%20cup%20final.ipynb

旧金山的药物地理学,Lance Martin对SF中公共犯罪数据的GIS分析。

旧金山的药物地理学

https://nbviewer.jupyter.org/github/lmart999/GIS/blob/master/SF_GIS_Crime.ipynb

地理数据科学是Dani Arribas-Bel讲授的学习访问,挖掘和分析社会现象空间数据的完整课程。

地理数据科学

http://darribas.org/gds17/

使用Python和Pandas进行公开的OKCupid的个人资料数据集的分析和可视化,由Alessandro Giusti提供,包括许多彩色的的数据可视化

使用Python和Pandas进行公开的OKCupid的个人资料数据集的分析和可视化

https://nbviewer.jupyter.org/github/lalelale/profiles_analysis/blob/master/profiles.ipynb

  • 心理学和神经科学

Will Adler提出的与神经种群的线索组合。理论的直觉和模拟(Ma et al,2006),通过概率人口代码,神经元可以用简单的线性操作执行最佳线索组合。在不损害敢管系统的情况下显示皮质活动的变化,是一种编码感官测量不确定性的自适应机制。

神经种群的线索组合

https://nbviewer.jupyter.org/github/wtadler/cue-combination-with-neurons/blob/master/neural_cue_combination.ipynb

由Ariel Rokem 提供的使用非线性函数对心理物理数据进行建模。

使用非线性函数对心理物理数据进行建模

https://nbviewer.jupyter.org/github/arokem/teach_optimization/blob/master/optimization.ipynb

可视化脑细胞连接的数学模型。研究了不同感受域函数和自然图像的卷积效应。

可视化脑细胞连接的数学模型

https://nbviewer.jupyter.org/github/jonasnick/ReceptiveFields/blob/master/receptiveFields.ipynb

用于视觉研究的Python。为使用Python编程的视觉研究人员提供为期三天的速成课程,使用PsychoPy和psychopy_ext构建实验,使用PyMVPA学习fMRI多体素模式分析,以及在Python中使用简化的图像处理

用于视觉研究的Python

https://nbviewer.jupyter.org/github/gestaltrevision/python_for_visres/blob/master/index.ipynb

装载和可视化fMRI数据,是GAEL Varoquaux的NiLearn课程的功能性连接的一部分。

  • 机器学习,统计和概率

使用sklearn进行机器学习的教程,这是一个由Andreas Mueller创建的基于IPython的幻灯片。

使用sklearn进行机器学习的教程

https://mp.weixin.qq.com/cgi-bin/appmsg?t=media/appmsg_edit&action=edit&type=10&appmsgid=100011380&isMul=1&token=231318955&lang=zh_CN#/

用Python的scikit-learn介绍机器学习,由Cyrille Rossant提供。这是一个来自IPython Cookbook的免费教程,也是对于数据科学的一个全面的Python教程。

用Python的scikit-learn介绍机器学习

https://ipython-books.github.io/81-getting-started-with-scikit-learn/

Python预测模型介绍,由Olivier Grisel提供。

基于Wild数据库中已标记面孔子集的面部识别,由Olivier Grisel提供。

基于Wild数据库中已标记面孔子集的面部识别

https://nbviewer.jupyter.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

面向多层次建模的贝叶斯方法介绍,由Chris Fonnesbeck提供。

面向多层次建模的贝叶斯方法介绍

https://nbviewer.jupyter.org/github/fonnesbeck/multilevel_modeling/blob/master/multilevel_modeling.ipynb

介绍贝叶斯网络由Kui Tang提供。

介绍贝叶斯网络

https://nbviewer.jupyter.org/github/kuitang/hackny-bayesnet/blob/master/hackNY%20Bayesian%20Network%20Demo.ipynb

由Thomas Wiecki 提供的用PyMC3进行贝叶斯数据分析

用PyMC3进行贝叶斯数据分析

https://nbviewer.jupyter.org/github/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb

对于解决模式分类问题的例子集合,由Sebastian Raschka撰写。

对于解决模式分类问题的例子集合

https://github.com/rasbt/pattern_classification

介绍使用Python的线性回归,由Kevin Markham撰写。

介绍使用Python的线性回归

https://nbviewer.jupyter.org/github/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb

Python机器学习,这是一个基于Andrew Ng的Coursera课程的机器学习系列。数据科学的笔记本大集合的一部分由Hohn Wittenauer提供。

Python机器学习

https://nbviewer.jupyter.org/github/jdwittenauer/ipython-notebooks/blob/master/notebooks/ml/ML-Exercise1.ipynb

可能性,悖论和理性人原则,作者Peter Norvig。

可能性,悖论和理性人原则

https://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb

你有可能对Yelp进行五星评价吗?--用scikit-learn 弄脏你的手,由Xun Tang提供。完整的幻灯片。

你有可能对Yelp进行五星评价吗?--用scikit-learn 弄脏你的手

https://nbviewer.jupyter.org/github/xun-tang/pyladies_jupyter_demo/blob/master/Predict_Review_Five_Star_Rating.ipynb

幻灯片

https://docs.google.com/presentation/d/1bfrXePztSa-yTP8n_qTdd9zazNS_tyJs1mG3fYItznI/edit

地理人口统计细分模型,由Filipa Rodrigues编写。

地理人口统计细分模型

https://nbviewer.jupyter.org/github/filipacsr/DataScience/blob/master/GeodemographicSegmentationModel.ipynb

  • 物理,化学和生物学

用blasr和(I)Python编写一个基因组汇编程序,由[Jason Chin](Jason Chin)编写。

用blasr和(I)Python编写一个基因组汇编程序

https://nbviewer.jupyter.org/github/cschin/Write_A_Genome_Assembler_With_IPython/blob/master/Write_An_Assembler.ipynb

使用Python的多体动力学和控制,来自Jason K. Moore 的笔记本文件。

使用Python的多体动力学和控制

http://www.moorepants.info/blog/npendulum.html

化学结构的显示和操作,由Greg Landrum提供,使用rdkit。

化学结构的显示和操作

https://nbviewer.jupyter.org/gist/greglandrum/4316433

氢的声音,可视化和聆听氢的量子力学光谱。作者:Matthias Bussonnier。

氢的声音

https://nbviewer.jupyter.org/github/Carreau/posts/blob/master/07-the-sound-of-hydrogen.ipynb

大型强子对撞机(LHC)的粒子物理学:在LHCb大规模中使用ROOT:由CERN的Alexander Mazurov和Andrey Ustyuzhanin 提供的笔记本1和笔记本2。

笔记本1

https://nbviewer.jupyter.org/github/mazurov/webfest2013/blob/master/notebooks/MasterClassD0-ex1.ipynb

笔记本2

https://nbviewer.jupyter.org/github/mazurov/webfest2013/blob/master/notebooks/MasterClassD0-ex2%2Cex3.ipynb

使用Python的NumPy的反应扩散方程求解器,由Georg Walther提供的一个演示,关于IPython笔记本如何用于在一页上讨论数值算法的理论和实现。

使用Python的NumPy的反应扩散方程求解器

https://nbviewer.jupyter.org/github/waltherg/notebooks/blob/master/2013-12-03-Crank_Nicolson.ipynb

比较进化模拟的不同方法。此处也可用于更好的可视化。使用旧的nbconvert和第一个开发的reveal转换器实现将笔记本转换为HTML演示文稿。由Yoav Ram提供。

  • 经济与金融

由Vincent Arel-Bundock,Reinhart和Rogoof提供的经济增长的高度争议性分析的复制,完整报告。这是基于Herndon,Ash和Pollin对原始分析的广泛宣传。

Vincent Arel-Bundock

http://umich.edu/~varel

经济增长的高度争议性分析的复制

https://nbviewer.jupyter.org/github/vincentarelbundock/Reinhart-Rogoff/blob/master/reinhart-rogoff.ipynb

完整报告

https://github.com/vincentarelbundock/Reinhart-Rogoff

面向经济金融的fecon235系列笔记本,用于检验经济学和金融学的时间序列数据。Easy API可以自由访问美联储,SEC,CFTC,股票和期货交易所的数据。因此,可以复制旧笔记本的研究,并使用最新数据进行更新。例如,该笔记本预测美联储可能会制定联邦基金利率政策,但CFTC交易商承诺报告中可以观察到主要资产类别的市场情绪。主要经济指标重新规范化:例如,各种通货膨胀指标,可选择具有来自美国国债的前瞻性盈亏平衡率。其他笔记本检查了国际市场:特别是黄金和外汇。

面向经济金融的fecon235

https://github.com/rsvp/fecon235

固定收益:结构化债券 - 交互式场景,在Jupyter使用交互式小部件和Python的连续偿还债券,由Mats Gustavsson提供。

固定收益:结构化债券 - 交互式场景

https://nbviewer.jupyter.org/github/MatsGustavsson/finance-jupyter/blob/2b5c1458b0e9b9c299fe25590566814e92287a1c/SequentialStructure.ipynb

  • 地球科学和地理空间数据

探索海底栖息地:使用带有GRASS&R的IPython Notebook进行地理分析。这在笔记本中嵌入了幻灯片和Web旋转地球仪(Cesium)。作者:Massimo Di Stefano。

探索海底栖息地:使用带有GRASS&R的IPython Notebook进行地理分析。

https://nbviewer.jupyter.org/gist/epifanio/7598354

使用IPython进行地理空间数据。来自SciPy2013 的Kelsey Jordahl的教程。

使用IPython进行地理空间数据

https://nbviewer.jupyter.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb

  • 数据可视化和绘图

绘制陷阱:绘制大型数据集时的常见问题,以及如何避免这些问题。作者:James A. Bednar。

绘制陷阱

https://anaconda.org/jbednar/plotting_pitfalls/notebook

使用数据共享器可视化的美国人口普查数据和纽约出租车数据。

数据共享器

https://github.com/pyviz/datashader

来自Plotly的带有交互式Hans Rosling Gapminder气泡图的笔记本。

笔记本

https://nbviewer.jupyter.org/github/plotly/python-user-guide/blob/master/s3_bubble-charts/s3_bubble-charts.ipynb

通过基于网络资源的数据和可视化集成。使用NetCDF,Matplotlib,IPython Parallel和ffmpeg从网格数据的时间序列生成视频动画。作者:Massimo Di Stefano。

通过基于网络资源的数据和可视化集成

http://tw.rpi.edu/media/2013/09/25/a48/The_Perfect_Storm_1991.html

21交互式,D3绘图来自matplotlib,ggplot for Python,prettyplotlib,Stack Overflow和seaborn。

21交互式,D3绘图来自matplotlib,ggplot for Python,prettyplotlib,Stack Overflow和seaborn

https://nbviewer.jupyter.org/gist/msund/7ac1203ded66fe8134cc

使用Matplotlib和Mayavi的复值函数的可视化,由Emilia Petrisor提供。

使用Matplotlib和Mayavi的复值函数的可视化

https://nbviewer.jupyter.org/github/empet/Math/blob/master/DomainColoring.ipynb

bqplot是一个完全基于该ipywidgets基础架构构建的基于d3的交互式可视化库。请看Hans Rosling的国富论的pythonic recreation。

bqplot

https://github.com/bloomberg/bqplot

用于Matplotlib可视化的D3查看器,与上述不同,不依赖于Plot.ly帐户。

用于Matplotlib可视化的D3查看器

http://jakevdp.github.io/blog/2013/12/19/a-d3-viewer-for-matplotlib/

Bokeh是一个用于Python(和其他语言)的交互式Web可视化库。它提供了类似d3的新颖图形,而基于大型数据集,不需要任何Javascript知识。它还有一个Matplotlib兼容层。

Bokeh是一个用于Python(和其他语言)的交互式Web可视化库

https://nbviewer.jupyter.org/github/bokeh/bokeh-notebooks/blob/master/quickstart/quickstart.ipynb

HoloViews可让您在笔记本中非常简洁地构建可视化。

HoloViews

http://holoviews.org/Tutorials/Showcase.html

2014年E.Tufte Slope Graph比赛冠军,由Pascal Schetelat提供。原始比赛信息在Tufte网站。

2014年E.Tufte Slope Graph比赛冠军

https://nbviewer.jupyter.org/gist/pascal-schetelat/8382651

matta,在IPython的笔记本基于d3.js-可视化,由Eduardo Graells-Garrido提供。

在IPython的笔记本基于d3.js-可视化

https://nbviewer.jupyter.org/github/carnby/matta/blob/master/examples/Basic%20Examples.ipynb

Clustergrammer Interactive Heatmap和DataFrame Viewer这个Python笔记本显示了一个简单的例子,说明如何使用Jupyter Widget Clustergrammer将矩阵文件和Pandas DataFrame可视化为交互式热图(使用D3.js构建)(参见论文)。

Clustergrammer Interactive Heatmap和DataFrame Viewer

https://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/Running_clustergrammer_widget.ipynb

论文

https://www.nature.com/articles/sdata2017151

  • 数学

Cython的线性代数。以不同方式为笔记本设置样式的教程来展示使用Notebook在线生成高质量的排版。作者:Carl Vogel。

Cython的线性代数

https://nbviewer.jupyter.org/github/carljv/cython_testing/blob/master/cython_linalg.ipynb

通过结合SymPy和matplotlib,探索即使在低序下,具有平滑外观的功能也可以拥有非常令人惊讶的衍生产品。作者:Javier Moreno。

应用数学和机器学习教程集(土耳其语)。作者:Burak Bayramli。

应用数学和机器学习教程集

http://sayilarvekuramlar.blogspot.com/2015/12/matematik-ders-notlari.html

iminuit的函数最小化,他们的硬核教程的介绍。由iminuit项目提供。

Jim Mahoney提供的离散余弦变换,简要解释和说明DCT背后的数学及其在JPEG图像格式中的作用。

使用Python的Chebfun,由Olivier Verdier提供的PyChebfun演示。PyChebfun是Battles和Trefethen的Chebfun包的纯粹python实现。

矩阵指数,矩阵指数的介绍,它的应用程序,以及Python和MATLAB中可用软件的列表由Sam Relton提供。

矩阵指数

https://nbviewer.jupyter.org/github/sdrelton/matrix_function_notebooks/blob/master/TheMatrixExponential.ipynb

分形,复杂的数字和你的想象力,由Caleb Fangmeier提供。

由Andrey Grozin撰写的SymPy教程

SymPy教程

https://nbviewer.jupyter.org/url/www.inp.nsk.su/~grozin/python/sympy.ipynb

Python数学入门,一系列针对没有/很少Python知识的数学家的笔记本。可以选择笔记本作为研讨会的资源。由Vince Knight提供。

Python数学入门

https://github.com/drvinceknight/Python-Mathematics-Handbook

信号和声音处理

在Python中使用deltasigma 模拟Delta Sigma调制器,这是Richard Schreier 优秀的 MATLAB Delta Sigma工具箱的 Python端口,由Giuseppe Venturini提供。README包中的几个示范笔记本。

在Python中使用deltasigma 模拟Delta Sigma调制器

https://nbviewer.jupyter.org/github/ggventurini/python-deltasigma/blob/master/examples/dsdemo1.ipynb

PyOracle:由Greg Surges音乐结构的自动分析。

SciPy的窗口功能进行快速目视检查和比较合集 由Jaidev Deshpande提供。

SciPy的窗口功能进行快速目视检查和比较合集

https://nbviewer.jupyter.org/urls/gist.githubusercontent.com/jaidevd/b7d865f7f4b237ab5181/raw/30bc8f998bf8f924b56b32ce10acce125656ed7c/scipy_window_gallery.ipynb

泊松图像编辑| 无缝克隆通过由Dhruv Ilesh Shah提供,通过使用泊松求解器在迭代形式实现无缝图像克隆的笔记本。

泊松图像编辑| 无缝克隆

https://nbviewer.jupyter.org/github/riddhishb/ipython-notebooks/blob/master/Poisson%20Editing/Seamless_Cloning.ipynb

盲源分离| 鸡尾酒会问题由Dhruv Ilesh Shah和Shashwat Shukla提供,这个笔记实现盲源分离,对音频信号以试图解决Cocktail PartyPrblem问题。这个问题已经用两种不同的方法解决了--FOBI和fastICA。

盲源分离| 鸡尾酒会问题

https://nbviewer.jupyter.org/github/riddhishb/ipython-notebooks/blob/master/Cocktail%20Party%20Problem/PCA_ICA_FOBI.ipynb

  • 自然语言处理

由Folgert Karsdorp和Maarten van Gompel 提供的人文学科Python编程。

人文学科Python编程。

https://www.karsdorp.io/python-course/

由Andres Soto Villaverde提供的 使用Multinomial朴素贝叶斯的新闻分类。

使用Multinomial朴素贝叶斯的新闻分类。

https://nbviewer.jupyter.org/github/andressotov/News-Categorization-MNB/blob/master/News_Categorization_MNB%2010-oct-2017.ipynb

使用随机交叉验证进行的新闻分类,由Andres Soto Villaverde提供。

使用随机交叉验证进行的新闻分类

https://nbviewer.jupyter.org/github/andressotov/rnd_cross_valid/blob/master/Using%20random%20cross-validation%20for%20news%20categorization.ipynb

  • 用于数据分析的Pandas

请注意,在上面的“集合”部分中也与Pandas相关的链接,例如11课程教程的链接。

这是一个10分钟的Pandas旋风之旅,这是Wes McKinney 视频的笔记,Wes McKinney 是Pandas和Python数据分析的作者。

这是一个10分钟的Pandas旋风之旅

https://nbviewer.jupyter.org/gist/wesm/4757075/PandasTour.ipynb

使用Pandas进行时间序列分析。

使用Pandas进行时间序列分析

https://nbviewer.jupyter.org/github/changhiskhan/talks/blob/master/pydata2012/pandas_timeseries.ipynb

使用Pandas进行财务数据分析

使用Pandas进行财务数据分析

https://nbviewer.jupyter.org/gist/twiecki/3962843

使用pandas和scipy对用于人类活动检测的智能手机传感器数据进行聚类,这是Coursera数据分析课程的一部分,在Python(repo)中完成。

使用pandas和scipy对用于人类活动检测的智能手机传感器数据进行聚类

https://nbviewer.jupyter.org/github/herrfz/dataanalysis/blob/master/week4/clustering_example.ipynb

使用Pandas进行日志分析,这是由Taavi Burns 在PyConCa 2012上一组展示的一部分。

使用Pandas进行日志分析

https://nbviewer.jupyter.org/url/taaviburns.ca/presentations/log_analysis_with_pandas/nb/5-Scatterplots.ipynb

用Pandas分析和可视化太阳黑子数据,由Josh Hemann提供。关于简单的的绘图选择如何巧妙地影响我们对数据的解释的启发性讨论。

用Pandas分析和可视化太阳黑子数据

https://nbviewer.jupyter.org/gist/jhemann/4569783

Apache日志的高级分析,由Nikolay Koldunov提供。

Apache日志的高级分析

https://nbviewer.jupyter.org/github/koldunovn/nk_public_notebooks/blob/master/Apache_log.ipynb

用Python进行统计数据分析,由Christopher Fonnesbeck提供,SciPy的2013年播视频1,2,3,4。

用Python进行统计数据分析

https://github.com/fonnesbeck/statistical-analysis-python-tutorial

1

https://www.youtube.com/watch?v=DXPwSiRTxYY

2

https://www.youtube.com/watch?v=TGEBpzJUxdI

3

https://www.youtube.com/watch?v=YZDtBEEZuAk

4

https://www.youtube.com/watch?v=5_rcdhBXD-0

3. 一般Python编程

学习用Python进行编码,来自滑铁卢用户组的Python介绍的一部分。

学习用Python进行编码

https://nbviewer.jupyter.org/urls/bitbucket.org/amjoconn/watpy-learning-to-code-with-python/raw/3441274a54c7ff6ff3e37285aafcbbd8cb4774f0/notebook/Learn%20to%20Code%20with%20Python.ipynb

数据科学家的Python简介,由Steve Phelps提供(数据科学大数据的大集合的一部分)。

数据科学家的Python简介

https://nbviewer.jupyter.org/github/phelps-sg/python-bigdata/blob/master/src/main/ipynb/intro-python.ipynb

Python描述符揭秘,由Chris Beaumont撰写的对Python中描述符协议的深入讨论。

Python描述符揭秘

https://nbviewer.jupyter.org/gist/ChrisBeaumont/5758381/descriptor_writeup.ipynb

你应该知道的一些不那么明显的Python东西!由Sebastian Raschka提供。

你应该知道的一些不那么明显的Python东西

https://nbviewer.jupyter.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1

Python的2.7.x和Python 3.X之间的主要差异,由Sebastian Raschka提供。

Python的2.7.x和Python 3.X之间的主要差异

https://nbviewer.jupyter.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb

新手指南Python的命名空间,范围分辨率,LEGB规则,由Sebastian Raschka提供。

新手指南Python的命名空间,范围分辨率,LEGB规则

https://nbviewer.jupyter.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb?create=1

使用Python CSV模块排序CSV文件,由Sebastian Raschka提供。

使用Python CSV模块排序CSV文件

https://nbviewer.jupyter.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb

由Leonardo Giordani撰写的 Python 3 OOP系列:第1部分:对象和类型,第2部分:类和成员,第3部分:委派 - 组合和继承,第4部分:多态,第5部分:元类,第6部分:抽象基类

如何使用3种方法聚合订阅者的兴趣:(1)Python字典,(2)Apache PySpark - GroupBy转换,以及(3)Apache PySpark - ReduceBy转换,由Abbas Taher提供 。

如何使用3种方法聚合订阅者的兴趣

https://nbviewer.jupyter.org/github/abbas-taher/Montreal-Python-69/blob/master/Montreal%20Python%2069.ipynb

4. 除Python以外的语言的笔记本

这些是使用[其中一种IPython内核用于其他语言]的笔记本(其他语言的IPython内核):

  • Julia

用于在内核和客户端之间进行通信的IPython协议是语言无关的,并且其他编程语言社区已经开始在其语言中构建对该协议的支持。Julia团队创建了IJulia,以下是一些Julia笔记本:

分形3种方式,作者:Jeff Bezanson。

多次调度的设计影响,Julia的多次调度设计的详细解释,由Stefan Karpinski撰写。

多次调度的设计影响

https://nbviewer.jupyter.org/gist/StefanKarpinski/b8fe9dbb36c1427b9f22

一个用Plotly和Julia只做交互图表的教程。

教程

https://nbviewer.jupyter.org/gist/bpostlethwaite/7551139

Julia的数字之旅

Julia的数字之旅

http://www.numerical-tours.com/julia/

功能几何,由Shashi Gowda提供。

功能几何

https://nbviewer.jupyter.org/github/shashi/ijulia-notebooks/blob/master/funcgeo/Functional%20Geometry.ipynb

JuliaOpt笔记本,一系列与优化相关的笔记本。

JuliaOpt笔记本

https://nbviewer.jupyter.org/github/JuliaOpt/juliaopt-notebooks/tree/master/notebooks/

使用IJulia笔记本的课程:

Métodos Numéricos Avanzados(2015-2),由Luis Benet和David P. Sanders提供。

Métodos Numéricos Avanzados(2015-2)

https://github.com/dpsanders/MetodosNumericosAvanzados

Métodos Monte Carlo,David Sanders

Métodos Monte Carlo

https://github.com/dpsanders/metodos-monte-carlo

线性偏微分方程:分析和数值,由Steven G. Johnson提供。

线性偏微分方程:分析和数值

https://github.com/mitmath/18303/tree/fall16

Julia计算分子生物学教程,由Younhun Kim和Matthew Reyna提供。

IJulia笔记本的其他系列:

Jiahao Chen

Jiahao Chen

http://jiahao.github.io/code/

Christoph Ortner

Christoph Ortner

https://homepages.warwick.ac.uk/staff/C.Ortner/index.php?page=julia

使用 Julia,Scipy和IPython跨越语言障碍,由Steven G. Johnson在EuroSciPy '14上展示。

使用 Julia,Scipy和IPython跨越语言障碍

https://github.com/stevengj/Julia-EuroSciPy14

  • Haskell

在IHaskell项目中存在用于IPython的Haskell内核。

IHaskell演示笔记本

IHaskell演示笔记本

https://nbviewer.jupyter.org/github/gibiansky/IHaskell/blob/master/notebooks/IHaskell.ipynb

同音缩减,解决了一个可爱的问题,关于将英文字母视为一个大群体的生成者。

同音缩减

https://nbviewer.jupyter.org/github/gibiansky/IHaskell/blob/master/notebooks/Homophones.ipynb

梯度下降类型类,看看如何使用类型类表示任意梯度下降算法。

梯度下降类型类

https://nbviewer.jupyter.org/github/gibiansky/IHaskell/blob/master/notebooks/Gradient-Descent.ipynb

  • OCaml

iocaml是IPython的OCaml内核

使用OCaml进行H.261视频解码

使用OCaml进行H.261视频解码

https://andrewray.github.io/iocamljs/oh261.html

用OCaml实现2048游戏

用OCaml实现2048游戏

http://gazagnaire.org/fuconf14/

  • Ruby

Julia内核类似,也存在用于IPython 的Ruby内核。

IRuby演示笔记本

SciRuby笔记本

IRuby演示笔记本

https://nbviewer.jupyter.org/github/SciRuby/sciruby-notebooks/blob/master/getting_started.ipynb

SciRuby笔记本

https://github.com/SciRuby/sciruby-notebooks

交互式绘图库Nyaplot使用IRuby进行了一些案例研究:

每GDP的战争支出在多个几何多边形中找到形状共识

每GDP的战争支出

https://mp.weixin.qq.com/cgi-bin/appmsg?t=media/appmsg_edit&action=edit&type=10&appmsgid=100011380&isMul=1&token=85330028&lang=zh_CN#Case2-:Fill-countries-in-different-colors

在多个几何多边形中找到形状共识

https://nbviewer.jupyter.org/gist/mgiraldo/a68b53175ce5892531bc

  • Perl

使用IPerl内核完全使用显示协议的例子。

显示协议

https://nbviewer.jupyter.org/github/zmughal/zmughal-iperl-notebooks/blob/master/IPerl-demos/20150209_IPerl_display_demo.ipynb

  • F#

Jupyter笔记本的F#

Jupyter笔记本的F#

https://github.com/fsprojects/IfSharp

  • C#

Xamarin工作簿为Android,iOS,Mac,WPF或控制台创建丰富的C#工作簿,并在学习这些API时获得即时实时结果。

Xamarin工作簿

https://github.com/xamarin/Workbooks

  • Javascript

两个IJavascript笔记本演示如何使用D3进行计算并发送SVG并使用虚拟DOM运行。

进行计算并发送SVG

https://nbviewer.jupyter.org/gist/Fil/efb1c9f3f0a9092c420dfe4cef8def96

虚拟DOM运行

https://nbviewer.jupyter.org/gist/Fil/aec6cbf62f9b71c3407db87d5eb592e7/D3%20notebook.ipynb

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

理论机器学习Jupyter数据分析文本挖掘神经科学图像处理自然语言处理IPython
15
相关数据
Amazon机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

排序算法技术

排序算法是将一串数据依照特定排序方式进行排列的算法,最常用到的排序方式是数值顺序以及字典顺序。基本上,排序算法的输出必须遵守下列两个原则:输出结果为递增序列(递增是针对所需的排序顺序而言);输出结果是原输入的一种排列、或是重组。

随机优化技术

随机优化(SO)方法是生成和使用随机变量的优化方法。 对于随机问题,随机变量出现在优化问题本身的表述中,其涉及随机目标函数或随机约束。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

自组织映射技术

自组织映射(SOM)或自组织特征映射(SOFM)是一种使用非监督式学习来产生训练样本的输入空间的一个低维(通常是二维)离散化的表示的人工神经网络(ANN)。自组织映射与其他人工神经网络的不同之处在于它使用一个邻近函数来保持输入控件的拓扑性质。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

Julia技术

Julia 是MIT设计的一个面向科学计算的高性能动态高级程序设计语言,项目大约于2009年中开始,2018年8月JuliaCon2018 发布会上发布Julia 1.0。据介绍,Julia 目前下载量已经达到了 200 万次,且 Julia 社区开发了超过 1900 多个扩展包。这些扩展包包含各种各样的数学库、数学运算工具和用于通用计算的库。除此之外,Julia 语言还可以轻松使用 Python、R、C/C++ 和 Java 中的库,这极大地扩展了 Julia 语言的使用范围。

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

数字信号处理技术

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。 大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

Apache Spark技术

Apache Spark是一款快速、灵活且对开发者友好的工具,也是大型SQL、批处理、流处理和机器学习的领先平台。它是一个围绕速度、易用性和复杂分析构建的大数据处理框架,提供了一个全面、统一的框架用于管理各种不同性质(文本数据、图表数据等)数据集和数据源(批量数据或实时的流数据)的大数据处理的需求。

离散余弦变换技术

离散余弦变换(英语:discrete cosine transform, DCT)是与傅里叶变换相关的一种变换,类似于离散傅里叶变换,但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

生物力学技术

生物力学是采用力学理论来研究生物体内物质运动的学科。人体力学是其中的一个分支。 生物力学的研究主题可以概括为以下三方面: 生物结构与功能的关系; 生物体的调节与控制机制; 生物的应力-生长关系。 目前在生物力学研究方面较为瞩目的研究领域包括骨组织的结构与受力分析、血液在血管及毛细血管网络中的流动规律、心脏的瓣膜运动、生物材料的制备、细胞乃至分子层次的生物力学问题等等。 运动生物力学:是研究人体运动力学规律的科学,它是体育科学的重要组成部分。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

协方差矩阵技术

在统计学与概率论中,协方差矩阵(也称离差矩阵、方差-协方差矩阵)是一个矩阵,其 i, j 位置的元素是第 i 个与第 j 个随机向量(即随机变量构成的向量)之间的协方差。这是从标量随机变量到高维度随机向量的自然推广。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

朴素贝叶斯技术

朴素贝叶斯是一种构建分类器的简单方法。该分类器模型会给问题实例分配用特征值表示的类标签,类标签取自有限集合。它不是训练这种分类器的单一算法,而是一系列基于相同原理的算法:所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

文本分析技术

文本分析是指对文本的表示及其特征项的选取;文本分析是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。

卡尔曼滤波技术

卡尔曼滤波,也称为线性二次估计(LQE).它使用时域上一系列包含统计噪声和其他误差的观测量,对未知变量进行估计。这种方法因为对每个时间段上未知变量的联合概率分布做了估计,因此比基于单一观测值预测更加精确。

OpenCV技术

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。

蒙特卡罗方法技术

蒙特卡罗方法,也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。是指使用随机数来解决很多计算问题的方法。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

层次聚类技术

层次聚类通过对数据集在不同层次进行划分,从而形成树形的聚类结构。数据集的划分可采用“自底向上”的聚合(agglomerative)策略,也可采用“自顶向下”的分拆(divisive)策略。“自底而上”的算法开始时把每一个原始数据看作一个单一的聚类簇,然后不断聚合小的聚类簇成为大的聚类。“自顶向下”的算法开始把所有数据看作一个聚类,通过不断分割大的聚类直到每一个单一的数据都被划分。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

信号处理技术

信号处理涉及到信号的分析、合成和修改。信号被宽泛地定义为传递“关于某种现象的行为或属性的信息(如声音、图像和生物测量)”的函数。例如,信号处理技术用于提高信号传输的保真度、存储效率和主观质量,并在测量信号中强调或检测感兴趣的组件。我们熟悉的语音、图像都可以看做是一种信号形式。因此,对于语音、图像的增强、降噪、识别等等操作本质上都是信号处理。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

贝叶斯网络技术

贝叶斯网络(Bayesian network),又称信念网络或是有向无环图模型,是一种概率图型模型。例如,贝叶斯网络可以代表疾病和症状之间的概率关系。 鉴于症状,网络可用于计算各种疾病存在的概率。

分布式计算技术技术

在计算机科学中,分布式计算,又译为分散式運算。这个研究领域,主要研究分布式系统如何进行计算。分布式系统是一组电脑,通过网络相互链接传递消息与通信后并协调它们的行为而形成的系统。组件之间彼此进行交互以实现一个共同的目标。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

文本挖掘技术

文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程,产生结构化数据,并最终评价和解释输出。'高品质'的文本挖掘通常是指某种组合的相关性,新颖性和趣味性。

进化策略技术

进化策略(Evolutionary Strategies,ES)是由德国的I. Rechenberg和HP. Schwefel于1963年提出的。ES作为一种求解参数优化问题的方法,模仿生物进化原理,假设不论基因发生何种变化,产生的结果(性状)总遵循零均值、某一方差的高斯分布。

进化计算技术

进化计算是遗传算法、进化策略、进化规划的统称。进化计算起源于20世纪50年代末,成熟于20世纪80年代,目前主要被应用于工程控制、机器学习、函数优化等领域。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

数据可视化技术

数据可视化被许多学科视为现代视觉传达的等价物。为了清晰有效地传递信息,数据可视化使用统计图形、图表、信息图和其他工具。数字数据可以使用点、线或条编码,以视觉传达定量消息。有效的可视化帮助用户对数据进行分析和推理。它使复杂的数据更容易理解和使用。用户可以根据特定的分析任务进行数据可视化,例如进行比较或理解因果关系,并且图形的设计原则(即,显示比较或显示因果关系)来进行可视化。表通常用于用户查找特定测量的地方,而各种类型的图表用于显示一个或多个变量的数据中的模式或关系。

语言学技术

每种人类语言都是知识和能力的复合体,语言的使用者能够相互交流,表达想法,假设,情感,欲望以及所有其他需要表达的事物。语言学是对这些知识体系各方面的研究:如何构建这样的知识体系,如何获取,如何在消息的制作和理解中使用它,它是如何随时间变化的?语言学家因此关注语言本质的一些特殊问题。比如: 所有人类语言都有哪些共同属性?语言如何不同,系统的差异程度如何,我们能否在差异中找到模式?孩子如何在短时间内获得如此完整的语言知识?语言随时间变化的方式有哪些,语言变化的局限性是什么?当我们产生和理解语言时,认知过程的本质是什么?语言学研究的就是这些最本质的问题。

量子计算技术

量子计算结合了过去半个世纪以来两个最大的技术变革:信息技术和量子力学。如果我们使用量子力学的规则替换二进制逻辑来计算,某些难以攻克的计算任务将得到解决。追求通用量子计算机的一个重要目标是确定当前经典计算机无法承载的最小复杂度的计算任务。该交叉点被称为「量子霸权」边界,是在通向更强大和有用的计算技术的关键一步。

暂无评论
暂无评论~