Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

参与思源

吴恩达最新TensorFlow专项课程开放注册,你离TF Boy只差这一步

不需要 ML/DL 基础,不需要深奥数学背景,初学者和软件开发者也能快速掌握 TensorFlow、掌握人工智能应用的开发秘诀。

以前,吴恩达机器学习课程和深度学习课程会介绍很多概念与知识,虽然也会有动手实验,但它们主要是为了帮助理解。在这一份 Coursera 新课中,吴恩达与谷歌大脑的 Laurence Moroney 从实践出发介绍了使用 TensorFlow 的正确姿态。

这一个专项课程目前主要包含两门课,即 TensorFlow 简介与 TensorFlow 中的卷积神经网络。第一课目前已经有很多 Coursera 学员留言,他们表示 TensorFlow 简介是一份极好的入门课程(TensorFlow/Keras),除了编程,它还会介绍机器学习深度学习的基本概念。

  • 课程一:https://www.coursera.org/learn/introduction-tensorflow

  • 课程二:https://www.coursera.org/learn/convolutional-neural-networks-tensorflow

但可能也是因为比较简单,很多学员希望在高级课程中了解更多的 TensorFlow 特性,尤其是 TensorFlow 2.0 的一些开发教程。此外,TensorFlow 中的卷积神经网络课程也今日已经开放注册,它是 TensorFlow 的提升课程。

可能读者最关心的一点是,它到底教的是 TF 1.x 还是 2.0?机器之心在免费注册旁听后发现一些比较吸引人的特点,例如所有练习都是在 Colab 上完成的、代码在 TF 1.x 和 2.0 之间是通用的等。如下图所示为课程练习题页面,代码放在贼好用的 Colab 上都不需要本地计算力。

注意上图是直接导入 TensorFlow,因此当前版本为 1.13.1。不过该课程表示代码足够通用,因此 TF 2.0 alpha 也可以直接使用,只要在导入前先要用 pip 安装 2.0 alpha 就行了。所以说,这个课程介绍的是 TF 1.x 与 2.0。

专项课程简介

如果你是软件开发者,想要试一试深度学习 APP,那么你可以上这门课;如果你是机器学习入门者,除了众多的理论公开课外还想学一学怎样搭个模型,那么这门课可以补足你的动手能力。

这一系列专项课程旨在提供最好的 TensorFlow 实现,我们可以逐步学会如何搭建深度学习模型,并将其应用于实际应用和真实问题中。目前 TensorFlow 仍然是最流行的框架,如果学会了用它做 DL 模型与应用,那么学其它框架就简单多了。

如果你准备搞一搞该系列专项课程,那么你将学习到:

  • 如何用 TensorFlow 构建机器学习模型

  • 如何用全连接网络和卷积神经网络构建图像识别算法

  • 理解如何将模型部署到移动端或网页端

  • 了解图像识别和文本识别外的其他 DL 任务

  • 扩展 TF 基本 API,并用于定制化的学习或训练

总体而言,在第一项课程中,我们将学习到如何用 TensorFlow 构建基本的神经网络,并将其应用到计算机视觉任务中,同时我们也会了解如何用卷积神经网络提升基本网络的性能。在第二项课程中,我们可以学到更多的高级技巧,例如怎样做数据增强、Dropout正则化迁移学习等等。这些模块或技巧能提升标准模型的性能,并打造实用的新应用。

目前这两个课程在 Coursera 上分别都需要花四周完成,每一周大概 4-5 的学时左右。它们都属于 deeplearning.ai 的专项课程,该系列的其它高级主题暂时还没有放出,可能需要过几月才会放出来。

如下所示为第二项课程的前两周课时,我们可以在 Coursera 上免费注册「旁听」,也就是完全获取课程材料,只不过拿不到成绩证明。当然如果想要认真学一学的话,注册每一门课程需要 194 人民币。

背景知识

学习这个专项课程并不要求对 DL 理论有多了解,相反我们需要知道 Python 编程与高中水平的数学基础。因为整个课程主要是面向开发者与初学者,所以 Python 基础还是要好好打的。

学习 Python 编程有很多路径,例如早一段时间的 Python 官方中文文档 ,这里提供几篇 Python(+NumPy)入门文章:

至于其它理论基础,有的话更好,没有的话也没关系。不过从机器学习深度学习吴恩达已经为你准备好了全套学习资料。最经典的机器学习课程不必说,肯定是最为优质的入门课程。虽然我们可能会感觉这门课介绍的很多模型在教程或文献中见得比较少,但很多知识点都是 DL 的基本概念。

机器学习:https://www.coursera.org/learn/machine-learning

对于深度学习吴恩达来也推出了深度学习专项课程,我们可以在 Coursera 或网易公开课上了解到相关资源。这个月,斯坦福也开放了 CS230 2018 秋季课程的视频,它会和 Coursera 上的深度学习专项课程有一些重叠。不过 CS230 2018 还是有更多的新知识,包括对抗样本聊天机器人等等。

视频列表:https://www.youtube.com/playlist?list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb

讲师

整个 TensorFlow 系列课程的讲师是吴恩达与谷歌大脑的 Laurence Moroney,前面两课的主讲都是 Laurence Moroney。

吴恩达老师我们都比较熟悉,就不做过多介绍了。另一位讲师 Laurence Moroney 是谷歌的 Developer Advocate,致力于使用 TensorFlow 来开发并构建人工智能相关的应用。他发表了很多编程书籍,现在在视频培训领域与 deeplearning.ai 和 Coursera 展开合作。

此外,Laurence 还是美国科幻作家协会成员,创作了一些科幻小说、剧本和漫画书,包括克里斯蒂安·贝尔主演电影《撕裂的末日》(Equilibrium)的前传。

嗯,确实是很有才了~

专项课程一:TensorFlow 简介

第一个专项课程是关于 TensorFlow 的简介。你会学到如何构建计算机视觉的基础神经网络以及使用卷积改进神经网络。如下是每周的学习主题:

第一周简要介绍机器学习深度学习,了解它们提供了什么样的新编程范式,为什么又提供一个可以打开新开发场景的工具集。学习这一部分,你只需要了解一些基础的编程技巧。

第二周开始学习使用几行代码来解决计算机视觉问题,并搭建一个简单的视觉模型。

前面搭建的朴素模型确实非常简单,那么在第三周里,我们将学会使用卷积网络处理视觉问题。

如果图像变大了或者特征总是不在同一个地方,怎么办?这个问题的讨论为第四周的学习内容做好准备:处理复杂图像。

专项课程二:TensorFlow 中的卷积神经网络

第二个专项课程主要讲如何改进你在第一个课程中搭建的计算机视觉模型,其中包含一些高级技巧。你将学习如何应对真实世界中形状、大小各异的图像、可视化对图像进行卷积操作的过程,以理解计算机如何「看见」信息、计算损失函数准确率、探索避免过拟合的策略等。最后,该课程还将介绍迁移学习以及如何从模型中提取学习到的信息。

第一周的课程将从探索一个更大的数据集——猫狗数据集开始,这也是 Kaggle 图像分类挑战赛的赛题之一。

第二周课程的主题是图像增强。增加训练数据可以提高模型的泛化能力,虽然这虽然这并不总是有效的,但我们还是可以选择数据增强来提升模型潜力。在这周的课程中,你将会学到如何调整训练集,以增加其多样性。

第三周的主题是迁移学习。自己构建模型固然很好,但有时会受到手头数据和计算力的限制。并非所有人都掌握着大量的数据和足够的算力,因此我们需要迁移学习。利用迁移学习,你可以直接把别人在大型数据集上训练的模型拿来用,或者只用他们学到的特征。

第四周的主题是多类别分类。之前的课程只讲了二分类,即如何区分马和人、猫和狗等。本周的课程将介绍如何进行多类别分类以及其中涉及的编程知识。

最后,学 TensorFlow 这种实战框架肯定需要大量练习,即便查阅已有的模型代码,我们最好不直接复制粘贴,手写代码也是一种很好的思考过程。

入门吴恩达Coursera
4
相关数据
来也科技机构

来也科技是中国乃至全球的智能自动化领军品牌,为客户提供变革性的智能自动化解决方案,提升组织生产力和办公效率,释放员工潜力,助力政企实现智能时代的人机协同。 来也科技的产品是一套智能自动化平台,包含机器人流程自动化(RPA)、智能文档处理(IDP)、对话式AI(Conversational AI)等。基于这一平台,能够根据客户需要,构造各种不同类型的数字化劳动力,实现业务流程的自动化,全面提升业务效率。

www.laiye.com/
网易机构

网易成立于1997年6月24日,是中国领先的互联网技术公司,为用户提供免费邮箱、游戏、搜索引擎服务,开设新闻、娱乐、体育等30多个内容频道,及博客、视频、论坛等互动交流,网聚人的力量。

https://www.163.com/
吴恩达人物

斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund。

所属机构
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

Dropout技术

神经网络训练中防止过拟合的一种技术

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

图像增强技术

图像增强技术用于增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合。它通过有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

推荐文章
暂无评论
暂无评论~