自从对抗攻击(Adversarial Attack)在图像识别网络上被发现之后,神经网络的应用安全成了一个热议的话题。这里介绍 SysML 2019大会两篇有关神经网络安全性的论文。第一篇讨论对抗攻击在离散输入的泛化定义,并将其应用于文档处理的网络上,第二篇讨论对抗攻击和常用的网络压缩的关系。
SysML简介:SysML,全名为 System and Machine Learning,其目标群体是计算机系统和机器学习的交叉研究。会议由斯坦福大学的研究人员牵头,致力于发展这两方面领域的新的交集,包括机器学习在计算机系统应用上的实践方法和设计概念,以及与实践相结合的新的机器学习方法和理论。
声明:本文的所有图片和公式都来自于原论文。
论文 1: 离散对抗攻击和次模函数的优化以及在文本分类中的应用
论文:DISCRETE ADVERSARIAL ATTACKS AND SUBMODULAR OPTIMIZATION WITH APPLICATIONS TO TEXT CLASSIFICATION
作者:Qi Lei, Lingfei Wu. 等等
来源地址 https://www.sysml.cc/doc/2019/79.pdf
1. 背景知识
对抗攻击:对用于图像识别的神经网络的攻击。
神经网络可以成功地识别左图为熊猫。但是通过在原图上添加人眼难以分辨的噪音之后,神经网络以高置信率识别右图为长臂猿。图片来自于 https://openai.com/blog/adversarial-example-research/
对抗攻击威胁了现存的神经网络的应用安全。如果通过图像识别的银行,或者自动驾驶系统被恶意攻击,后果将不堪设想。所以如何防御对抗攻击,以及是否还存在其他形式的对抗攻击,都是很重要的研究问题。
本文解决的问题:常见的对抗攻击一般是用于图像识别的神经网络,他们的输入是一个矩阵。这篇文章将对抗攻击泛化到离散集网络, 讨论并实现了对抗攻击在离散集输入神经网络中的应用。此框架适用的应用类型如下表所示:
处理离散集数据的神经网络包括很多常用的文本识别,病毒程序鉴定和恶意网站鉴定。