Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

陈运文作者

中文和英文NLP自然语言处理异同点分析

人类经过漫长的历史发展,在世界各地形成了很多不同的语言分支,其中汉藏语系印欧语系是使用人数最多的两支。英语是印欧语系的代表,而汉语则是汉藏语系的代表。中英文语言的差异十分鲜明,英语以表音(字音)构成,汉语以表义(字形)构成,印欧和汉藏两大语系有很大的区别。

尽管全世界语言多达5600种,但大部数人类使用的语言集中在图中的前15种(覆盖全球90%以上人群)。其中英语为母语和第二语的人数最多,近14亿人,是事实上的世界通用语。其次是汉语,约占世界人口的23%。英语和汉语相加的人数占世界总人数的近一半,因此处理中英文两种语言非常关键。 

人工智能时代,让计算机自动化进行文字语义理解非常重要,广泛应用于社会的方方面面,而语言本身的复杂性又给计算机技术带来了很大的挑战,攻克文本语义对实现AI全面应用有至关重要的意义。相应的自然语言处理Natural Language Processing,NLP技术因而被称为是“人工智能皇冠上的明珠”。

中国和美国作为AI应用的两个世界大国,在各自语言的自动化处理方面有一些独特之处。接下来笔者对中文和英文语言特点的角度出发,结合自己的从业经验来归纳下两种语言下NLP的异同点。(达观数据陈运文

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
入门自然语言处理达观数据陈运文中文分词词干提取词性标注词汇粒度指代消解共指消解知识图谱
121
相关数据
达观数据机构

达观数据是一家专注于文本智能处理技术的国家高新技术企业,先后获得中国人工智能领域最高奖 “吴文俊人工智能奖”、ACM CIKM算法竞赛全球冠军、EMI Hackathon数据竞赛全球冠军等荣誉。利用先进的自然语言处理(NLP)、光学字符识别(OCR)、知识图谱等技术,为大型企业和政府机构提供机器人流程自动化(RPA)、文档智能审阅、智能推荐等智能产品,让计算机协助人工完成业务流程自动化,大幅度提高企业效率。

https://www.datagrand.com/
陈运文人物

达观数据创始人和CEO,复旦大学博士。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

Skip-gram技术

CBOW和skip-gram是word2vec的核心概念。CBOW模型是用词的前后几个词来预测这个词,skip-gram的输入是当前词的词向量,而输出是周围词的词向量。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

条件随机场技术

条件随机场(conditional random field,简称 CRF),是一种鉴别式机率模型,是随机场的一种,常用于标注或分析序列资料,如自然语言文字或是生物序列。 如同马尔可夫随机场,条件随机场为无向性之图模型,图中的顶点代表随机变量,顶点间的连线代表随机变量间的相依关系,在条件随机场当中,随机变量 Y 的分布为条件机率,给定的观察值则为随机变量 X。原则上,条件随机场的图模型布局是可以任意给定的,一般常用的布局是链接式的架构,链接式架构不论在训练(training)、推论(inference)、或是解码(decoding)上,都存在有效率的算法可供演算。 条件随机场跟隐马尔可夫模型常被一起提及,条件随机场对于输入和输出的机率分布,没有如隐马尔可夫模型那般强烈的假设存在。 线性链条件随机场应用于标注问题是由Lafferty等人与2001年提出的。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

自动摘要技术

自动摘要是指给出一段文本,我们从中提取出要点,然后再形成一个短的概括性的文本。

自然语言生成技术

自然语言生成(NLG)是自然语言处理的一部分,从知识库或逻辑形式等等机器表述系统去生成自然语言。这种形式表述当作心理表述的模型时,心理语言学家会选用语言产出这个术语。自然语言生成系统可以说是一种将资料转换成自然语言表述的翻译器。不过产生最终语言的方法不同于编译程式,因为自然语言多样的表达。NLG出现已久,但是商业NLG技术直到最近才变得普及。自然语言生成可以视为自然语言理解的反向: 自然语言理解系统须要厘清输入句的意涵,从而产生机器表述语言;自然语言生成系统须要决定如何把概念转化成语言。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

写的很有意思~棒棒哒