Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

文本分类有哪些论文中很少提及却对性能有重要影响的tricks?

前言

一年前小夕在知乎上提问过这么一个问题

文本分类有哪些论文中很少提及却对性能有重要影响的tricks?
链接:https://www.zhihu.com/question/265357659/answer/578944550

当时正好在刷一个比较有趣的task,结果发现奇奇怪怪的tricks可以带来不少的性能收益。再加上后来为了验证一个小idea跑了一堆公开的文本分类数据集,虽然idea没有多亮,倒是积累和摸索了不少刷性能的tricks╮( ̄▽ ̄””)╭然后呢,小夕后续又用这些tricks刷了不少相关的比赛(哪怕是文本匹配这种特殊的文本分类问题),发现baseline+一堆tricks+简单集成就可以随随便便刷到一个文本分类的水比赛的top10甚至top3,甚感调参和tricks的重要性。

然鹅,最近好一段时间都没有文本分类这个基础问题了,感觉都快忘了,趁着还有点模糊的记忆就整理下来分享给大家叭~希望能在大家刷论文实验、比赛或实际项目的时候提供点帮助或者启发。

首先来一个结论,tricks用的好,调参调的妙,TextCNN也能吊打绝大多数花里胡哨的深度模型。tricks没用好,SOTA模型也会性能差的让你怀疑人生。下面就不分重点,没有逻辑的开始本文辣。

关于分词器

中文也好,英文也好,拿过来数据集无可避免的就是要看看要不要做分词(有的小伙伴以为英文数据集就完全不用分词真的让人很无奈鸭),如果要做,就要纠结分词器的选择了。

路人丙:我厂有全方位吊打各种开源分词工具的分词器了
小夕:好了你可以往下划了

首先就有一个问题,真的是算法越“先进”的分词器就会给下游任务带来越好的性能吗?

很多人走到这一步的时候会忽略一个东西,词向量!!!

其实比起分词算法本身的先进程度,在神经网络使用预训练词向量的大背景下,确保分词器与词向量表中的token粒度match其实是更更重要的事情!毕竟哪怕你词分的再好,一旦词向量表里没有的话,那么就变成OOV了,分的再好也木用了╮( ̄▽ ̄””)╭(除非你不嫌麻烦多写点代码去对相对于词向量表的OOV进行特殊处理,反正我一般嫌麻烦╮(╯▽╰)╭)于是这里就有了两种情况。

1. 已知预训练词向量的分词器

一般像word2vec、glove、fasttext这些官方release的预训练词向量都会公布相应训练语料的信息,包括预处理策略如分词等,这种情况真是再好不过了,不用纠结,如果你决定了使用某一份词向量,那么直接使用训练该词向量所使用的分词器叭!此分词器在下游任务的表现十之八九会比其他花里胡哨的分词器好用。

2. 不知道预训练词向量的分词器

这时就需要去“猜”一下分词器了。怎么猜呢?首先,拿到预训练词向量表后,去里面search一些特定词汇比如一些网站、邮箱、成语、人名等,英文里还有n't等,看看训练词向量使用的分词器是把它们分成什么粒度,然后跑几个分词器,看看哪个分词器的粒度跟他最接近就用哪个,如果不放心,就放到下游任务里跑跑看啦。

当然,最理想的情况当然是先确定最适合当前任务数据集的分词器,再使用同分词器产出的预训练词向量啦。可惜互联网上不可能有那么多版本的公开词向量供选择,因此自己在下游任务训练集或者大量同分布无监督语料上训练词向量显然更有利于进一步压榨模型的性能。不过,怎么为当前的任务去预训练一份儿好用的词向量又够写一篇文章的。。这里就不展开讲啦,小夕以后再写~(没关注小夕的赶紧关注!)

当然,除了分词器跟词向量表要match上,另外还要保证大小写、OOV的定义等跟词向量表match上。如果使用了一个区分了大小写的词向量表,但是你还将下游任务的单词全都小写,那么不用想了,绝对性能丢N多个百分点。

关于中文字向量

路人丁:好麻烦,我不分词了,我要用字向量了哼
小夕:别逃( ̄∇ ̄)

如果你真的将char-level作为主力,那么别忘了中文的字向量也要预训练!并且预训练的时候记得把窗口开大一些,不要直接使用word-level的窗口大小哦,其他预训练超参数也随手调一调更好了,绝对比随机初始化的字向量明显的好。

如果数据集噪声很严重

这里噪声严重有两种情况。对于数据集D(X, Y),一种是X内部噪声很大(比如文本为口语化表述或由广大互联网用户生成),一种是Y的噪声很大(一些样本被明显的错误标注,一些样本人也很难定义是属于哪一类,甚至具备类别二义性)。

对于前一种噪声,一个很自然的想法是去使用语言模型或者基于编辑距离去做文本纠错,然鹅实际中由于专有名词和超出想象的“假噪声”存在,在实际场景中往往效果并不是很好。

这里小夕一般有两种思路,一种是直接将模型的输入变成char-level(中文中就是字的粒度),然后train from scratch(不使用预训练词向量)去跟word-level的对比一下,如果char-level的明显的效果好,那么短时间之内就直接基于char-level去做模型叭~

如果性能差不太多,或者char的已经做到头了,想做一下word-level呢?

不要急,先帮小夕买根棒棒糖呗( ̄∇ ̄)

一个很work但是貌似没有太多人发现的trick就是使用特殊超参的FastText去训练一份词向量啦。

为什么说特殊呢?一般来说fasttext在英文中的char ngram的窗口大小一般取值3~6,但是在处理中文时,如果我们的目的是为了去除输入中的噪声,那么我们可以把这个窗口限制为1~2,这种小窗口有利于模型去捕获错别字(想象一下,我们打一个错误词的时候,一般都是将其中的一个字达成同音异形的另一个字),比如word2vec学出来的“似乎”的最近词可能是“好像”,然而小ngram窗口fasttext学出来的“似乎”最近词则很有可能是“是乎”等内部包含错别字的词,这样就一下子让不太过分的错别字构成的词们又重新回到了一起,甚至可以一定程度上对抗分词器产生的噪声(把一个词切分成多个字)。当然,如果数据集很干净的话,这样训练词向量的话可能就gg了。

而对于后一种噪声的情况(即Y中的噪声),一种很直接的想法是做标签平滑,然而小夕在实战中使用多次发现效果并不是太明显。

最后总结的trick是,首先忽略这个噪声,强行的把模型尽可能好的训出来,然后让训练好的模型去跑训练集和开发集,取出训练集中的错误样本和开发集中那些以很高的置信度做出错误决策的样本(比如以99%的把握把一个标签为0的样本预测为1),然后去做这些bad cases的分析,如果发现错误标注有很强的规律性,则直接撸一个脚本批量纠正一下(只要确保纠正后的标注正确率比纠正前明显高就行)。

如果没有什么规律,但是发现模型高置信度做错的这些样本大部分都是标注错误的话,就直接把这些样本都删掉吧~常常也可以换来性能的小幅提升,毕竟测试集都是人工标注的,困难样本和错标样本不会太多。

baseline选用CNN还是RNN?路线沿着CNN还是RNN走?

文本分类中真的不要太纠结这个问题,个人倾向于CNN,主要是因为跑得快呀。。。可以多跑几组实验,多好。而且实际经验感觉TextCNN这种基础款CNN模型不仅实现特别容易,而且很容易成为一个数据集上的很强的baseline(除非这个分类任务很难),花一两个小时把这个baseline做出来后再去做其他模型一点也不迟~也有助于早期就能纠正大方向。

而如果要谈到客观的思路决策上,那就去花一个小时好好看一下数据集吧~如果你感觉数据集里很多很强的ngram可以直接帮助生成正确决策,那就CNN起步吧。如果感觉很多case都是那种需要把一个句子看完甚至看两三遍才容易得出正确tag,那就RNN起步吧。

当然,如果数据大,又有显卡,还可以尝试Transformer。时间多的话,还可以CNN、RNN的模型都跑出来简单集成一下。

Dropout加在哪里

word embedding层后、pooling层后、FC层(全联接层)后,哦了。起步阶段dropout概率保持统一,有时间再单独微调就好(从来没有这个时间过)。

至于偶尔有人吹捧的word dropout策略(将一些token随机mask成[PAD],或者说0。注意这个操作跟dropout加在embedding层后不等价哈),最后有时间的话试一下就好,亲测在dropout调好的情况下一般并不会发挥多大作用。

关于二分类

分类问题一定要用sigmoid作为输出层的激活函数?当然不是,尝试一下包含俩类别的softmax吧。可能多一条分支就多一点信息叭,虽然后者在数学形式上更丑一点,但是实践中常常带来零点几个点的提升也是比较玄学了。

关于多标签分类

如果一个样本同时拥有多个标签,甚至标签同时还构成了DAG(有向无环图),不要着急,先用binary-cross-entropy训出个baseline来(即把每个类别变成一个二分类问题,这样N个类别的多标签分类问题就变成了N个二分类问题),毕竟这个都在tensorflow里有现成API了,即tf.nn.sigmoid_cross_entropy_with_logits。因此实现代价很小。

然后你还可能惊喜的发现,这个baseline做好后好像多标签问题不大了,DAG问题自己也基本解决了(虽然模型层并没有专门针对这个问题作处理),然后就可以安心做模型辣。什么?问题木有解决?去查论文吧╮( ̄▽ ̄””)╭小夕还没有接触过这方面太难的数据集。

类别不均衡怎么办

像网上说的那样赶紧各种上采样下采样boosting策略用起来?nono,正负样本比才9:1的话,继续做你的深度模型调你的超参吧,模型做好后你会发现这点不均衡对模型来说不值一提,决策阈值也完全不用手调。但!是!如果你发现经常一个batch中完全就是同一个类别的样本,或者一些类别的样本经过好多batch都难遇到一个的话,均衡就非常非常有必要了。类别不均衡问题传送门->

【小夕精选】如何优雅而时髦的解决不均衡分类问题

别太纠结系列

  1. 别太纠结文本截断长度使用120还是150

  2. 别太纠结对性能不敏感的超参数带来的开发集性能的微小提升

  3. 别太纠结未登陆词的embedding是初始化成全0还是随机初始化,别跟PAD共享embedding就行

  4. 别太纠结优化器用Adam还是MomentumSGD,如果跟SGD的感情还不深,就无脑Adam,最后再用MomentumSGD跑几遍

还是不会用tricks但是就是想跑出个好结果怎么办

BERT了解一下。

Over。

暂时想起来的就是这些啦,剩下有想起来的tricks小夕会更新到知乎上,传送门:

https://www.zhihu.com/question/265357659/answer/578944550

夕小瑶的卖萌屋
夕小瑶的卖萌屋

转自微信公众号【夕小瑶的卖萌屋】,几个有颜有料的小仙女分享机器学习干货的公众号,专注于NLP、搜索与推荐技术前沿

入门文本分类分词器中文字向量CNN二分类问题多标签分类
9
相关数据
基于Transformer 的双向编码器表征技术

BERT是谷歌发布的基于双向 Transformer的大规模预训练语言模型,该预训练模型能高效抽取文本信息并应用于各种NLP任务,并刷新了 11 项 NLP 任务的当前最优性能记录。BERT的全称是基于Transformer的双向编码器表征,其中“双向”表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

Dropout技术

神经网络训练中防止过拟合的一种技术

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

有向无环图技术

在图论中,如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。 因为有向图中一个点经过两种路线到达另一个点未必形成环,因此有向无环图未必能转化成树,但任何有向树均为有向无环图。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

上采样技术

在数字信号处理中,上采样、扩展和内插是与多速率数字信号处理系统中的重采样过程相关的术语。 上采样可以与扩展同义,也可以描述整个扩展和过滤(插值)过程。

word2vec技术

Word2vec,为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。 训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系。该向量为神经网络之隐藏层。 Word2vec依赖skip-grams或连续词袋(CBOW)来建立神经词嵌入。Word2vec为托马斯·米科洛夫(Tomas Mikolov)在Google带领的研究团队创造。该算法渐渐被其他人所分析和解释。

优化器技术

优化器基类提供了计算梯度loss的方法,并可以将梯度应用于变量。优化器里包含了实现了经典的优化算法,如梯度下降和Adagrad。 优化器是提供了一个可以使用各种优化算法的接口,可以让用户直接调用一些经典的优化算法,如梯度下降法等等。优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。用户基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer(tensorflow下的优化器包)等等这些算法。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

知乎机构

知乎,中文互联网综合性内容平台,自 2010 年成立以来,知乎凭借认真、专业、友善的社区氛围,独特的产品机制,以及结构化、易获得的优质内容,聚集了中文互联网科技、商业、影视、时尚、文化等领域最具创造力的人群,已成为综合性、全品类,在诸多领域具有关键影响力的内容平台。知乎将AI广泛应用与社区,构建了人、内容之间的多元连接,提升了社区的运转效率和用户体验。知乎通过内容生产、分发,社区治理等领域的AI应用,也创造了独有的技术优势和社区AI创新样本。

zhihu.com
推荐文章
暂无评论
暂无评论~