Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法——以StockRanker为例

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量Y未来的取值,并找到了影响变量Y取值的K 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数f(X1,X2,…,XK|Θ)去描述 Y和特征变量之间的关系,Θ为这个函数的参数

要找到这样的函数,必须要足够量的观测数据,假设有 N 个样本数据y1,y2,…,ynx1i,x2i,…,xKi(其中i=1,2,…,n)。然后定义一个函数LL来衡量真实观测数据和模型估计数据偏差,函数 L 也称作损失函数(Loss Function)。基于历史观测数据,我们可以求解下列的最化问题来得到参数Θ 的估计值 。

求解(1.1)过程称作模型训练(Model Traing)。基于特征变量的最新观测值和训练出来的模型参数就可以预测yy的数值。 接下来,我们以一个具体的AI量化策略看一下用机器学习方法开发策略的具体流程。

开发AI量化策略的流程

使用机器学习开发策略的流程如下图所示:

为便于理解,以StockRanker为例介绍。StockRanker是一种监督式股票排序学习算法,假设我们要预测个股未来n天的收益率,然后将其进行排序, 使用该算法在新的一天数据上进行预测,可以向我们推荐应该买入哪些股票。我们结合上图介绍下使用StockRanker算法来开发量化策略的流程。

  • 首先,确定目标。因为是监督学习,因此需要对收益率数据进行标注。
  • 接着,数据划分。将所有数据划分为训练数据和测试数据,训练数据用来训练模型,测试数据用来检验模型的表现。
  • 然后,特征构造。特征构造是至关重要的一步,特征构造的好将会直接影响模型效果和策略表现。在这一步,你在金融行业的专业知识和投资经验将发挥很大的作用。
  • 然后,训练和预测。在特征构造完毕后,就可以训练好StockRanker算法并进行预测。
  • 最后,策略回测。根据StockRanker预测结果进行策略回测,获取策略表现。

关于AI策略的预测能力

量化交易人员对机器学习的态度很复杂,一方面自己实际投资中发现选股因子和股票收益之间关系并非完全线性,需要能力更强的分析预测工具,另一方面又担心机器学习工具过于复杂,导致数据挖掘,样本内过拟合的结果外推性不强,经济含义也不好解释。我们这里想说明的是,ML(Machine learning)虽然没法完全避免过拟合的可能性,但配合使用一些方法是可以降ML低过拟合的概率,提升样本外预测能力的。

假设输入变量X 和输出变量 Y 的真实关系可以表示为 Y=f(X)+ϵ,ϵ为误差项,满足

E(ϵ)=0,Var(ϵ)=σϵ2 。投资者者通过 ML 方法找到了f(X) 的一个拟合函数f(x)^ 。对于一个新的数据点 X=x0, 它的预测偏差定义为:

ML模型的预测偏差取决于(1.2)的这三项,第一项取值与 ML 模型选择无关,第二项 Bias和第三项Variance 的理解可以参考下图,两者都受 ML 模型复杂度的影响;

一般来讲,模型复杂度越高,Bias 越小,但 Variance 越大;模型复杂度越低,BiasBias越大,Variance越小。从下图可以看出,当模型复杂度较高的时候,虽然偏差很小,但是模型方差很大,因此模型的泛化能力不高。

因此要想提高 ML模型的预测能力,模型并不是越复杂越好,而是要在 BiasVariance 间做权衡,降低总体预测误差,也就是所谓的 Bias−Variance  trade−off

对待机器学习,我们应该摆脱固有的“黑箱“和”过拟合“概念,一些 ML 算法的逻辑非常直白,而且 ML 在求解优化问题估计模型参数时,通常会带正则化约束条件,通过交叉验证的方式来选择参数,避免过拟合。 众多的实践研究说明, ML 方法的预测能力大部分情况下都强于线性模型。

总结

AI量化策略在收益和稳健性上都要比传统的线性模型高,更重要的是它可以帮助我们省去Barra结构风险模型中”因子筛选“、”因子加权“和”组合优化“的过程,提升策略开发效率。

原文链接:《AI量化策略,我该如何理解你?》

本文由BigQuant人工智能量化投资平台原创推出,版权归BigQuant所有,转载请注明出处。 

宽邦科技
宽邦科技

提供金融行业人工智能平台和服务解决方案,研发了全国首个人工智能量化投资平台BigQuant,拥有全栈人工智能平台和大规模机器学习和深度学习框架与算法,为券商、银行、保险、资管等金融机构以及更多企业提供AI技术方案和业务解决方案,实现机构及企业的AI转型和升级。

入门机器学习AI量化量化投资
4
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

模型选择技术

模型选择是从给定数据的一组候选模型中选择统计模型的任务。对于具有类似预测或解释力的候选模型,最简单的模型最有可能是最佳选择(奥卡姆剃刀)。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

推荐文章
暂无评论
暂无评论~