Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

吴甘沙、张玉新作者 驭势未来来源

CES 2019 前夕 | 万字长文回顾智能驾驶进化史

当卡尔 · 本茨发明汽车,人类进入汽车时代时,科学技术就对人类的 “ 出行 ” 进行了新的定义,而随着技术的不断发展与进步, 人类对于智能驾驶这一梦想有了新的期待与希冀。那么,智能驾驶是如何起源、孕育、发展、爆发的呢?从中我们能够获得什么样的启发?本文将回顾这一历史,并探讨新兴战略技术和产业的发展途径。本文转载自赛迪研究院主办的《人工智能》杂志 2018 年 12 月刊,作者为吴甘沙、张玉新,未经授权禁止二次转载。

信息技术发展具有 20 年的周期律: 1970 年至 1990 年是发轫于 PC 的数字化,1990 年至 2010 年是互联网推动的网络化,而从 2010 年开始的这 20 年,我们面临的将是人工智能寒武纪大爆发。

目前,人工智能炙手可热,创业公司如雨后春笋般涌现。从业者开始思考,如何让技术形成涟漪效应,促使产业非线性、跃迁式增长。

有人把人工智能和产业的关系比喻成 “ 葡萄干和面包 ” ,虽然葡萄干离开面包仍是葡萄干,但两者结合在一起就能创造出高价值的新品类。

笔者近年来一直在探索人工智能的产业机会,并得出结论:未来 15 年,智能驾驶将是人工智能所带来的增值最大的产业,没有之一。

首先,激活、重塑和创造多个 万亿级 市场。

  • 激活汽车市场,智能、安全和人机共驾的新体验将重新激起人们换车的需求;

  • 重塑出行市场,无人驾驶 + 共享汽车将解决如今困扰消费者和出行服务商的最大问题——司机成本和 “ 坏人 ” 风险。如果说当前的网约车只解决了 2 % 的出行,那么未来无人驾驶出租车可以将这个比例提升数十倍;

  • 创造了新的消费经济和生产力市场——乘客经济。乘客在路上或消费,或工作,或娱乐,每一辆车都可以变成移动的商业地产。

其次,解决人类进入汽车社会以来一直无法解决的多个社会问题 ——交通拥堵(以及怠速行驶带来的废气排放)、事故频发、停车难等。无人驾驶如同具有千亿公里的驾驶经验和百万年驾龄的“ 老司机”,不疲劳、不路怒、不酒驾药驾、不随意加塞、也不用操心停车,可以根本性解决上述问题,真正满足人民群众对美好生活的向往。

智能驾驶的发展,可以分成 4 个阶段:

2004 年以前;

2004 年 - 2009年:第一个 6 年——孕育;

2010 年 - 2015 年:第二个 6 年——成长;

2016 年 - 2021 年:第三个 6 年——开花;

2022 年 - 2027 年:第四个 6 年——结果。

2004 年以前:自动驾驶的前世

1921 年 8 月,第一辆无人驾驶(实为遥控)汽车在美国诞生,美国陆军的一位电子工程师坐在后面的一辆车上,用无线电操控前面那辆无人车的方向盘、离合器和制动器。

1939 年的纽约世界博览会,通用汽车在 “ 未来世界 ” 展览上,预言 1960 年高速公路将具有电子轨道,与汽车的自动驾驶系统相配合,实现无人驾驶,直到驶出高速公路才切换回司机驾驶。

此后,通用汽车并没有把这个预言当做儿戏,而是在 1956 年展出了 Firebird II,这辆看似 “火箭” 的概念车有史以来第一次具备了自动导航系统。两年以后,Firebird III 问世时,BBC 现场直播了基于车路协同的无人驾驶,高速公路上预埋的线缆与车端的接收器通过电子脉冲信号进行通讯,展示了未来高速公路的无人驾驶形态。

实际上,真正具备独立自动驾驶能力的原型——Shakey,出现在 20 世纪 60 年代,诞生于斯坦福研究院(Stanford Research Institute),这个研究院后来改名为斯坦福国际研究院(SRI International),以发明了电脑鼠标和语音助手 Siri 闻名,它的另一重要贡献是机器人。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
产业自动驾驶驭势科技
31
相关数据
Waymo机构

Waymo是Alphabet公司(Google母公司)旗下的子公司,专注研发自动驾驶汽车,前身是Google于2009年开启的一项自动驾驶汽车计划,之后于2016年独立。2017年10月,Waymo开始在美国亚利桑那州的公开道路上试驾。2018年12月,Waymo在凤凰城郊区推出了首个商业自动乘车服务Waymo One。

http://www.waymo.com/
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
寒武纪机构

寒武纪科技是一家AI芯片研发商。致力于打造各类智能云服务器、智能终端以及智能机器人的核心处理器芯片,同时还为用户提供IP授权、芯片服务、智能子卡和智能平台等服务。

www.cambricon.com
RoboSense(速腾聚创)机构

RoboSense(速腾聚创)是全球领先的智能激光雷达系统(Smart LiDAR Sensor System)科技企业。RoboSense通过激光雷达硬件、AI算法与芯片三大核心技术闭环,为市场提供具有信息理解能力的智能激光雷达系统,颠覆传统激光雷达硬件纯信息收集的定义,赋予机器人和车辆超越人类眼睛的感知能力,守护智能驾驶的安全。

https://www.robosense.ai/
地平线机构

以“赋能机器,让人类生活更安全、更美好”为使命,地平线是行业领先的高效能智能驾驶计算方案提供商。作为推动智能驾驶在中国乘用车领域商业化应用的先行者,地平线致力于通过软硬结合的前瞻性技术理念,研发极致效能的硬件计算平台以及开放易用的软件开发工具,为智能汽车产业变革提供核 心技术基础设施和开放繁荣的软件开发生态,为用户带来无与伦比的智能驾驶体验。

horizon.ai
陆奇人物

百度集团副董事长,Y Combinator中国CEO。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

激光雷达技术

自动驾驶车辆传感器的一种,采用激光扫描和测距来建立车辆周围环境的详细三维模型。Lidar 图像具有高度准确性,这使得它可以与摄像头、超声波探测器和雷达等常规传感器相提并论。然而激光传感器面临体积过大的问题,同时,它的机械结构非常复杂。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

OpenCV技术

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。

遥感技术

遥感(remote sensing)是指非接触的、远距离的探测技术。一般指运用传感器/遥感器探测物体的电磁波辐射、反射特性。遥感通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标。

降维技术

降维算法是将 p+1 个系数的问题简化为 M+1 个系数的问题,其中 M<p。算法执行包括计算变量的 M 个不同线性组合或投射(projection)。然后这 M 个投射作为预测器通过最小二乘法拟合一个线性回归模型。两个主要的方法是主成分回归(principal component regression)和偏最小二乘法(partial least squares)。

Argo AI机构

Argo AI是一家美国自动驾驶汽车公司,总部位于匹兹堡,2016年底由前Google与Uber自动驾驶部门员工成立。Argo AI 正在研发一套自动驾驶系统,这套系统最终将面向其它公司出售。 2017年2月,福特称将在未来五年向Argo AI投资10亿美元,帮助其致力于为自动驾驶车辆提供智能驾驶平台,也就是通俗意义上的大脑系统,并且会在未来将这个平台授权给其它汽车厂商使用。当时,Argo AI拥有不到12名员工。但2018年,通过从苹果、Uber和其他科技公司挖来软件工程师和机器人研究人员,该公司的员工数量增加近26倍,达到约330人。

https://www.argo.ai/
百度智能云机构

百度是全球最大的中文搜索引擎,是一家互联网综合信息服务公司,更是全球领先的人工智能平台型公司。2000年1月1日创立于中关村,公司创始人李彦宏拥有“超链分析”技术专利,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

http://www.baidu.com
Nuro机构

Nuro成立于2016年,是由前谷歌自动驾驶项目的两位核心成员朱佳俊和Dave Ferguson共同创立的机器人技术公司。创立Nuro之前,朱佳俊和Dave在谷歌自动驾驶汽车团队一起共事了6年。 Nuro团队还聚集了众多来自谷歌、Waymo、苹果、特斯拉、通用汽车、优步、Twitter等科技公司的科研、工程和产品人才。自动驾驶团队包含了2007美国国防部自动驾驶汽车比赛冠军队成员,三位来自谷歌的首席工程师分别负责了三代谷歌自动驾驶汽车的软硬件核心技术研发,以及苹果自动驾驶汽车的资深部门负责人。机器人算法团队包含了很多来自全世界一流名校的毕业生,包括卡内基梅隆、斯坦福、加州伯克利、麻省理工、普林斯顿、加州理工、哈佛、牛津、北大、复旦等。人工智能团队包含了ImageNet的往届冠军和Deepmind的前成员。

nuro.ai/
相关技术
Roadstar.ai机构

Roadstar.ai是一家专注于自动驾驶Level 4技术研发及应用的人工智能企业。主要提供多传感器前融合的自动驾驶解决方案,Roadstar.ai致力于打造更加智能、安全、可靠的自动驾驶技术,实现未来出行方式的彻底变革。凭借核心技术优势及实际路测经验,Roadstar.ai无人车已实现在加州平均一个月一次人工干预、国内高复杂城市路况环境下连续数小时无人工接管的行驶,包括夜晚、雨天、高峰期、过隧道等特殊场景。

http://roadstar.ai/
奇虎360机构

360公司成立于2005年8月,创始人周鸿祎 2011年3月30日在纽交所成功上市 2018年2月28日,回归A股上市,上证交易所(601360) 是中国第一大互联网安全公司,用户6.5亿,市场渗透率94.7% 中国第一大移动互联网安全公司,用户数超过8.5亿 中国领先的AIoT公司,将人工智能技术应用于智能生活、家庭安防、出行安全、儿童安全等多个领域

http://smart.360.cn/cleanrobot/