Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

《Nature Medicine》来源学术经纬编译整理

Nature子刊深度综述 :「人工智能+医疗」的实施现状与未来发展

人工智能(AI)正在经历爆炸式增长,影响着许多行业,也正为医疗健康行业带来一场全新革命。“AI+医疗”成为热门领域,在学界、工业界和监管机构中都引发了极大关注。

今日,广州医科大学第一附属医院院长何建行教授与加州大学圣地亚哥分校(UCSD)人类基因组医学研究所所长张康教授在最新一期《Nature Medicine》上发表了一篇深度综述,梳理和预测了AI技术在医疗健康领域的实施现状与未来发展。我们整理了这篇综述中的精彩内容,以飨读者。

▲何建行教授(左)与张康教授(右)(图片来源:两位学者所属科研院所)

AI在医疗领域的现状

“AI+医疗”指的是人工智能通过机器学习表征学习深度学习和自然语言处理等各种技术,利用计算机算法从数据中获取信息,以协助制定临床决策为目的,实现辅助诊断、疗法选择、风险预测、疾病分诊、减少医疗事故和提高效率等一系列功能。

在医疗健康领域,AI发挥重要影响的应用将涵盖四大方向:诊断,治疗,人口健康管理,监督和调控。

▲“AI+医疗”潜在应用的四大方向 (图片来源:根据《Nature Medicine》图片修改)

研究人员预测了基于AI的技术在临床实施应用的几种方式。

首先是作为分诊和筛查工具,理论上可以降低医疗系统的压力,把资源分配给最需要医疗帮助的患者。例如,通过深度学习AI工具可以检查视网膜图像,确定哪些患者有致盲性眼病并及时转诊给眼科医生。还有英国Babylon公司开发的一款移动应用,可以和用户直接互动的聊天机器人,实质上就是基于AI的分诊工具,用于区分患者是否需要找医生做进一步检查。

AI技术还可以在一些理论上不复杂但时间紧、耗人力的任务上作为替代人手,让医疗工作者可以去处理更复杂的任务。例如,自动化分析射线成像,估测骨龄;自动化分析光学相干断层扫描(OCT)影像,诊断可以治疗的视网膜疾病;自动化分析心血管图像,量化血管狭窄和其他指标,等等。

最能体现AI价值的方式或许是让AI辅助专业医师。让临床医生与AI结合,产生1+1>2的协同效应,支持实时的临床决策,助力精准医疗。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
产业医疗机器学习Nature表征学习深度学习自然语言处理
4
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

推荐文章
暂无评论
暂无评论~