Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

哈啾路亚作者顺丰科技单位NLP,神经网络研究方向

从信息瓶颈理论一瞥机器学习的“大一统理论”

序言

所有机器学习的原理,本质上都是对同一段信息在不同空间内的转换、过滤、重新表征,最终解码出一段可读信息。为了让最终信息可读,我们需要给最终输出的每一个 bit 赋予意义。如果是监督学习,则需要定义一个度量来描述输出信息与真实信息的距离。

列举常见的传统机器学习,我们可以发现大多数监督学习都遵循着这一机制。 

SVM 使用内核机制重新定义了两个向量的内积,经过 centering 这样一个定义原点的操作之后,可以很快看出内核机制实际上重新定义了两个样本间的欧式距离。

而任意两点间的欧式距离被改变,则意味着坐标系的转换,并且转换过后的新坐标系基本上不再是直角坐标系了,很可能是一个更高或是更低维度流型上的曲线坐标系。这时优化度量 margin loss 再在新坐标系上尝试分割出正负样本的 support vector 的最大间隔,找到线性超平面即可。 

所有回归,包括线性回归回归树,以及各种 boosting tree,其坐标转换部分也非常明显,从 N 维输入到 1 维输出的转换(不管线性还是非线性),之后接一个优化度量(KL 距离既交叉熵、最小二乘、triplet loss,etc.)。 

贝叶斯流派的最终优化目标:logP(x),其本质还是减少,即增加预测分布与目标分布的互信息。其特征空间的转换的方法,就比较五花八门了,这里不细分析。 

那么,除了输入与输出的表征方法,以及优化度量的选择之外,是否在各种机器学习包括深度学习方法内,通用的一些规则呢?就如同牛顿三大定律一样,足以解释所有经典力学的公式。 

从信息瓶颈方法出发,接下来会尝试解释一系列深度学习中出现的知识,并稍作延伸与传统学习的知识点进行类比,去探索机器学习的最核心思路。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
理论信息瓶颈机器学习监督学习
141
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

条件熵技术

在信息论中,条件熵描述了在已知第二个随机变量 {\displaystyle X} X 的值的前提下,随机变量 {\displaystyle Y} Y 的信息熵还有多少。同其它的信息熵一样,条件熵也用Sh、nat、Hart等信息单位表示。基于 {\displaystyle X} X 条件的 {\displaystyle Y} Y 的信息熵,用 {\displaystyle \mathrm {H} (Y|X)} \mathrm{H} (Y|X) 表示。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

欠拟合技术

使用太少参数,以致于不能很好的拟合数据,称为拟合不足(欠拟合)现象

交叉熵技术

交叉熵(Cross Entropy)是Loss函数的一种(也称为损失函数或代价函数),用于描述模型预测值与真实值的差距大小

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

微分熵技术

微分熵是消息理论中的一个概念,是从以离散随机变数所计算出的夏农熵推广,以连续型随机变数计算所得之熵,微分熵与离散随机变数所计算出之夏农熵,皆可代表描述一信息所需码长的下界,然而,微分熵与夏农熵仍存在着某些相异的性质。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

回归树技术

回归树可以被视为决策树的变体,旨在逼近实值函数,而不是用于分类方法。

线性回归技术

在现实世界中,存在着大量这样的情况:两个变量例如X和Y有一些依赖关系。由X可以部分地决定Y的值,但这种决定往往不很确切。常常用来说明这种依赖关系的最简单、直观的例子是体重与身高,用Y表示他的体重。众所周知,一般说来,当X大时,Y也倾向于大,但由X不能严格地决定Y。又如,城市生活用电量Y与气温X有很大的关系。在夏天气温很高或冬天气温很低时,由于室内空调、冰箱等家用电器的使用,可能用电就高,相反,在春秋季节气温不高也不低,用电量就可能少。但我们不能由气温X准确地决定用电量Y。类似的例子还很多,变量之间的这种关系称为“相关关系”,回归模型就是研究相关关系的一个有力工具。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

噪音技术

噪音是一个随机误差或观测变量的方差。在拟合数据的过程中,我们常见的公式$y=f(x)+\epsilon$中$\epsilon$即为噪音。 数据通常包含噪音,错误,例外或不确定性,或者不完整。 错误和噪音可能会混淆数据挖掘过程,从而导致错误模式的衍生。去除噪音是数据挖掘(data mining)或知识发现(Knowledge Discovery in Database,KDD)的一个重要步骤。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

混乱度技术

衡量概率分布或概率模型预测样本能力的一个度量单位,其可以被用来比较概率模型的好坏,值越低表示在预测样本方面的效果越好。

奇虎360机构

360公司成立于2005年8月,创始人周鸿祎 2011年3月30日在纽交所成功上市 2018年2月28日,回归A股上市,上证交易所(601360) 是中国第一大互联网安全公司,用户6.5亿,市场渗透率94.7% 中国第一大移动互联网安全公司,用户数超过8.5亿 中国领先的AIoT公司,将人工智能技术应用于智能生活、家庭安防、出行安全、儿童安全等多个领域

http://smart.360.cn/cleanrobot/
推荐文章
暂无评论
暂无评论~