Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

徐川作者InfoQ来源小智编辑

解读2018:我们处在一个什么样的技术浪潮当中?

最近经济寒冬的说法越来越多,身边的互联网企业裁员的也有不少,越是寒冬,我们越需要了解趋势,找准前进的方向。过去几年,互联网各种“风口”此起彼伏,到底哪些才是真正的趋势?这篇文章里我将试图分析目前互联网技术的发展,找出它们背后的原因和逻辑

本文由机器之心经授权转载自InfoQ(ID:infoqchina ),未经授权禁止二次转载。

如果你长期跟进本领域的前沿技术,你会发现近十年来互联网技术发生了非常大的变化,这种变化几乎在每一个领域里发生:

  • 在软件架构领域,经历了从单体应用到 SOA 再到微服务;

  • 云计算领域,经历了从虚拟机到容器;

  • 数据库领域,从关系数据库到 NoSQL 再到 NewSQL;

  • 大数据领域,从批处理到流处理;

  • 在运维领域,从手工运维到 DevOps、AIOps;

  • 在前端领域,从 jQuery 到 React 等三大框架;

  • ……

除此之外,还有一些新兴的领域如 AI、区块链,从不受重视到成为显学,开启了一波又一波的风口。

单个去看这些领域的发展,会觉得纷繁杂乱没有头绪,但如果从整体上去看,会发现它们相互之间有联系,它们的发展源于一种共同的推动力,遵循着相似的逻辑

如果要对这个推动力、对今天这个技术浪潮起一个名字,在当前阶段我觉得可以用“云原生”,但这个短语被过度使用在各种营销语境中,它的定义会发生偏离,所以后文我不会用这个短语,而是用真正的云计算这句话。

我们当前技术浪潮的真实含义,就是我们正在走向真正的云计算时代,其它领域的发展皆由此而来,如果要更具体一点,就是:

  • 云计算的技术逐渐发展成为它本来该有的模样;

  • 以及与这样的云所匹配的软件架构;

  • 以及与这样的架构所匹配的开发流程与方法论。

下面,我会分析几个主要的技术领域,从它们的发展历程来论述。

云计算:从虚拟化到容器到 Serverless

先从云计算说起。

2005 年亚马逊发布了 AWS,算是拉开了云计算的序幕。但是,在很长一段时间里云计算都没有兑现自己的“自动扩容、按使用付费”的宣传语。

云计算最重要的技术是分布式计算和分布式存储,分布式计算方面,最开始的技术是虚拟化,也就是所谓的“Software defined xxx”,通过对计算 / 存储和网络资源的虚拟化,同时能够给用户任意分配资源。但这里面一开始做的最好的只有文件存储这一块,AWS S3 及类似的对象存储产品给人们带来了云时代的一些实际的体验,但云服务器则还是走回了卖服务器的老路。

当然, 这里的云服务器和传统服务器相比还是有优势的,至少运维不需要千里迢迢跑到机房去排查问题。但和我们想要的云服务相比还差的很远,它只是传统技术在过渡到云时代的替代品。虚拟化技术新建服务器耗时长,在扩容方面限制很大,容器技术诞生后,才终于解决了这一问题。但现在一些 MicroVM 开始出现,比如 AWS 刚刚发布的 FireCracker,试图融合虚拟机和容器的优点,这也是当前云计算技术的一个重要关注点。

分布式存储方面,分为文件和数据库,文件通过对象存储的方式很早就解决了,数据库则面临漫长的发展过程,传统的数据库需要向分布式架构转变,同时你会发现云计算厂商成为了数据库的研发主力,这些新数据库天生就是分布式,或者天生就支持云计算特性的。

云计算的发展过程中,有一个分支是 PaaS,最早是 2007 年推出的 Heroku,从形态上来说,它是一个 App Engine,提供应用的运行环境。PaaS 的理念被认为更贴近真正的云计算,如果你使用虚拟化的云服务器,你仍然要自己负责应用分发、部署和运维,要与各种底层接口、资源打交道,在 PaaS 上,这些都不用管了,你只需要把应用上传到云端就行。

但是,之前的 PaaS 体验较差,容易造成平台绑定,难以支持大型应用,所以并没有成为主流。这些问题直到 Kubernetes 出现后才得以解决。

在 2015 年之前,OpenStack 是云计算的主流技术,很多公司包括 IBM/ 红帽都在它身上投入重注。然而,随着曾经过分天真乐观的一些公司如思科,它们试图基于 OpenStack 进入公有云市场,但在现实面前迅速败退,以及主要参与者 Nebula 的关闭,市场的信心遭遇重挫。再加上 Docker 和 Kubernetes 的快速崛起,OpenStack 的声势已经大不如前了。

然而在这么多厂商的支持下 OpenStack 是否就无敌了呢?看似紧密的社区与厂商之间的关系,在容器这个新的技术热点面前被轻松击破。厂商不再是 Pure Play OpenStack,社区贡献排名也不再提及。

——唐亚光 《OpenStack 七年盘点,热潮褪去后的明天在哪?》

但是,Kubernetes 还是太底层了,真正的云计算并不应该是向用户提供的 Kubernetes 集群。

2014 年 AWS 推出 Lambda 服务,Serverless 开始成为热词,从理论上说,Serverless 可以做到 NoOps、自动扩容和按使用付费,也被视为云计算的未来。但是,Serverless 本身有一些问题,比如难以解决的冷启动性能问题,因此,围绕 Serverless 的研发,以及将 Serverless 和容器技术融合也是当前的前沿课题。

Serverless 是我们过去 25 年来在 SaaS 中走的最后一步,因为我们已经渐渐将越来越多的职责交给了服务提供商。

——Joe Emison 《为什么 Serverless 比其他软件开发方法更具优势》

架构:微服务、Service Mesh 和 Serverless

云计算为应用打造了分布式的基础设施,但是,如果应用还是以传统的单体应用的思路开发,则云计算意义并不大。

这些年里,软件架构逐渐从 SOA 进化到微服务,很多人认为微服务是一种细粒度的 SOA,在去掉了 SOA 中的 ESB 之后,微服务变得更加灵活、性能更强。但是,实施微服务需要一些前提。

Martin Fowler 曾经总结过微服务实施的前提包括:

  • 计算资源的快速分配

  • 基本的监控

  • 快速部署

这基本就是 Kubernetes 所起到的主要作用,虽然如 Spring Cloud、Dubbo 微服务框架在各方面已经非常完善,但随着云原生计算基金会的壮大,基于 Kubernetes 的微服务在社区中的热度越来越高,也开始有很多公司开始利用这一套技术栈来构建微服务。

到 2016 年,Service Mesh 开始引起社区的注意,Kubernetes 加上 Service Mesh,再加上 CNCF 的一些开源项目,基于 k8s 的微服务技术栈基本就完善了。2018 年 Istio 1.0 发布,更是为这股浪潮加了一把火,未来的微服务将是 k8s 和 Service Mesh 的天下。

Service Mesh:下一代微服务?

微服务正在逐渐走向巅峰的过程中,但它的挑战者已经出现。Serverless 或者说 FaaS 最开始只是 AWS 推出的一个功能,但随着社区和业界的跟进,逐渐有人将其认为是微服务的进化。其逻辑也很简单,从 SOA 到微服务是一个服务粒度逐渐拆分得更小的过程,FaaS 里的 Function 可以视为更小的、原子化的服务,它天然的契合微服务里面的一些理念。

许晓斌 《从微服务到 FaaS》

当然,关于 Serverless 如何融入到现有架构,目前并没有成熟的经验,Serverless 本身也存在一些问题,但毫无疑问这是业界关注的重点。

3数据库:从 NoSQL 到 NewSQL

在过去几年,数据库的发展同样令人瞩目。

2009 年 MongoDB 开源,掀开了 NoSQL 的序幕,一时之间 NoSQL 的概念受人追捧,MongoDB 也因为其易用性迅速在社区普及。NoSQL 抛弃了传统关系数据库中的事务和数据一致性,从而在性能上取得了极大提升,并且天然支持分布式集群。

然而,不支持事务始终是 NoSQL 的痛点,让它无法在关键系统中使用。2012 年,Google 发布了 Spanner 论文,从此既支持分布式又支持事务的数据库逐渐诞生,以 TiDB、蟑螂数据库等为代表的 NewSQL 身兼传统关系数据库和 NoSQL 的优点,开始崭露头角。

从目前已有的 SQL 数据库实现方案来看,NewSQL 应该是最贴近于云数据库理念的实现。NewSQL 本身具有 SQL、ACID 和 Scale 的能力,天然就具备了云数据库的一些特点。但是,从 NewSQL 到云数据库,依然有很多需要挑战的难题,比如多租户、性能等。

——崔秋《云时代数据库的核心特点》

本来事情发展到这里就结束了,但 2014 年亚马逊又推出一个重磅炸弹:基于新型 NVME SSD 虚拟存储层的 Aurora,它实现了完全兼容 MySQL(甚至连 bug 都兼容)的超大单机数据库,同时在性能上高出 5 倍以上。

Amazon Aurora 读后感:

https://zhuanlan.zhihu.com/p/30159571

另外,各种不同用途的数据库也纷纷诞生并取得了较大的发展,比如用于 LBS 的地理信息数据库,用于监控和物联网的时序数据库,用于知识图谱的图数据库等。

可以说,数据库目前处于一个百花齐放的阶段,而由于云厂商的努力,基本上新的数据库都支持自动扩容、按使用付费的云计算特征。

大数据:从批处理到流处理

Google 在 03-06 年发布了关于 GFS、BigTable、MapReduce 的三篇论文,开启了大数据时代。在发展的早期,就诞生了以 HDFS/HBase/MapReduce 为主的 Hadoop 技术栈,并一直延续到今天。在这当中,不少组件都是可替换的,甚至有的发生了换代。这其中,最重要的换代就是处理引擎。

最开始大数据的处理大多是离线处理,MapReduce 理念虽然好,但性能捉急,新出现的 Spark 抓住了这个机会,依靠其强大而高性能的批处理技术,顺利取代了 MapReduce,成为主流的大数据处理引擎。

随着时代的发展,实时处理的需求越来越多,虽然 Spark 推出了 Spark Streaming 以微批处理来模拟准实时的情况,但在延时上还是不尽如人意。2011 年,Twitter 的 Storm 吹响了真正流处理的号角,而 Flink 则将之发扬光大。

到现在,Flink 的目光也不再将自己仅仅视为流计算引擎,而是更为通用的处理引擎,开始正面挑战 Spark 的地位。

Apache Flink 已经被业界公认是最好的流计算引擎。然而 Flink 的计算能力不仅仅局限于做流处理。Apache Flink 的定位是一套兼具流、批、机器学习等多种计算功能的大数据引擎。在最近的一段时间,Flink 在批处理以及机器学习等诸多大数据场景都有长足的突破。

——王绍翾(大沙)《不仅仅是流计算:Apache Flink®实践》序

Hadoop 本身也遭遇了 Kubernetes 的挑战。Hadoop 本身包括专用于处理大数据的编排系统如 Yarn 等,但如 Spark/Presto/Kafka 等最重要的 Hadoop 技术已经可以在 Kubernetes 上运行,使用 Kubernetes 来运行大数据技术栈,可以更好的与其它业务集成。遭遇挑战的表现之一就是 Hadoop 技术栈的两家主要提供商,Cloudera 和 Hortonworks 最近决定合并,缓慢的增长表明市场上已经容不下两家提供商了。

Will Kubernetes Sink the Hadoop Ship?:

https://thenewstack.io/will-kubernetes-sink-the-hadoop-ship/

运维:从手工运维到 DevOps

运维在过去几年遭遇了云计算技术的强烈冲击。那些依赖云计算提供商的公司,它们的运维的职责大大削弱,而自研云技术的公司里的运维则要求大大提高,过去的经验已经难以适用了。

这其中最重要的变化就是 DevOps 的出现,运维的身份职责发生了转变,它不再是专门跑任务脚本或者与机器打交道的人,而是变成了 OpenStack 或者 Kubernetes 的专家,通过搭建 / 管理相关的分布式集群,为研发提供可靠的应用运行环境。

DevOps 更重要的方面还是改变了应用交付的流程,从传统的搭火车模式走向持续交付,应用的架构和形态改变了,其方法论也随之而改变。DevOps 和持续交付也被认为是云原生应用的要素。

至于 AIOps 是 DevOps 在实践 AI 过程中的一些应用,称不上是范式的改变,AI 在运维领域还远远取代不了人的作用。

前端:前后端分离

前端在过去几年的变化同样称得上是翻天覆地,2008 年 Nodejs 的出现彻底激发了前端的生态,将 JavaScript 的疆域拓展到服务端和桌面,最终催生出大前端的概念。

如果纯粹看传统的前端开发的变化,不仅主流技术从 jQuery 转移到三大框架,更重要的是 SPA 和前后端分离的出现。

SPA 代表着前端的应用化,也就意味着胖客户端,部分业务逻辑可以从服务端转移到客户端完成。前后端分离更是将前端从后端独立出来,划定了领域边界。后端对前端来说,成为了数据层,只要接口能够正确返回数据,前端并不关心后端是如何做到的。

事实上,胖客户端的转变正好与后端的进化方向吻合。无论是微服务还是 Serverless,都强调无状态,这意味着你不应该用后端去生成有状态的 UI,而是让客户端自行处理状态。

从前后端分离看阿里 Web 应用架构演变

互联网分层架构,为啥要前后端分离?

为了应对越来越大型的客户端代码,前端发展出的技术包括 TypeScript、Redux/MobX、WebAssembly、WebWorker 等,这些也是前端重点关注的技术。

AI:互联网的新基础设施

现代的 AI 是基于大数据机器学习的,在很多公司里大数据和 AI 属于同一个数据科学的团队。在过去两年,AI 已经用各方面的成绩证明它可以成为整个互联网的基础设施之一,帮助让我们的互联网更加的智能化。

如果把 2016 年的 AlphaGo 当做现代 AI 的起点,那么 AI 发展的历史其实很短。学术界还在研究怎么提升 AI 的算法,各个公司则是急于将 AI 应用到生产环境。

AI 从感知层大致分为两大块,一块是计算机视觉,这一块已经比较成熟,无论是人脸识别、物体检测、运动检测都已经能用于实际场景中。另一块则是 NLP,虽然微软、Google 等宣称它们的 AI 翻译准确率已经极高,但实际上仍然不太好用,而多轮会话的问题没有解决,Chatbot 还是难以与人展开正常对话。

总之,真正的通用人工智能 AGI 离我们还远,至少现在还看不到头绪。AI 虽然在炒作中显得有些过热,但其技术和应用是真实的。

致开发者:2018 年 AI 技术趋势展望

被高估的 2018:深度学习发展并没有想象的快

值得注意的是,在 2018 年,国内几家涉及公有云业务的公司纷纷调整架构,将之前的云计算部门升级为智能云计算部门:

  • 9 月 30 日,腾讯架构调整,新成立云与智慧产品事业群;

  • 11 月 26 日,阿里集团架构调整,阿里云事业群升级为阿里云智能事业群;

  • 12 月 18 日,百度调整架构,将之前的智能云事业部升级为智能云事业群。

云厂商们之所以将 AI 作为它们的顶级战略并与云计算放在一起,是因为 AI 本身需要强大的、专门定制的基础设施,是云的一个非常适合的场景;同时也因为 AI 技术有一定门槛,可以作为自身云计算差异化的一个点。总之,这些云厂商通过 AI 来卖它们的云服务。

区块链:不确定性

2018 年的区块链无疑是最有争议的话题,这里抛开那些炒作与骗局,可以看到区块链技术在 2018 年有很大的发展。

具体可分为两方面:

  • 一方面是公链上一些痛点解决方案的探索和突破。包括比 POW 更好的共识机制、并发交易性能、数据存储和处理、跨链交易等等。当然,问题还远远没有得到解决。由于利益牵扯太多,这一领域也没有公认的主流解决方案。

  • 另一方面是联盟链的逐渐成熟,其中代表技术为超级账本,一部分早期采用者在探索联盟链的适用场景,一部分则是做起卖水的生意,推出 BlockChain as a Service。

在现在这个时刻,区块链的未来有太多的不确定性了,无法进行预测,所以这里不再多谈。

物联网边缘计算:为何发展不起来

物联网在过去几年一直不温不火,似乎一直在炒作中,但真正有影响力的产品和应用比较少。曾经炒过一阵的开发板最终回归为极客的玩具。物联网本身的技术,除了各种通信协议和嵌入式操作系统和开发框架之外,近两年炒的最火的就是边缘计算了,然而,边缘计算也是炒作的重灾区。

事实上,边缘计算的定义并没有清晰,甚至连边缘是什么都没有共识。有的说终端节点、智能设备是边缘,有的说 CDN 是边缘,有的说路由器、交换机是边缘,还有的说未来的 5G 基站是边缘。

边缘计算的技术目前只看到一个 EdgeX Foundry,然而在该项目里目前还看不到一个有代表性的重量级的技术,更多是一些厂商抢占风口的占位行为。

为什么会这样呢?其实好理解,因为物联网是一个很好预测的未来趋势。

从互联网到移动互联网,是一个不断扩张的过程,不但终端节点大量增加,而且每时每刻都在线,如果将这个逻辑延伸一下就是物联网了,终端从智能手机变成任何可联网的设备。

正因为这是大家都看得到的趋势,所以所有的厂商都提前在物联网布局,试图成为下一个领先者。

但互不退让的结果,就是陷入三个和尚没水吃的境地。历史上,NFC 移动支付和物联网通信协议都有这种遭遇:

  • NFC 方面,在中国,银联主推 miniSD 卡的 NFC 方案,而运营商主推带 NFC 的 sim 卡,而手机厂商更愿意将 NFC 功能直接集成至手机中。在国外,美国三大运营商推出基于 NFC 的移动支付功能 Isis,苹果谷歌各自有自己的 NFC 钱包,而 Android 阵营的手机也多半将 Android Pay 功能替换为自家的支付功能。

  • 物联网通信协议方面,WiFi、蓝牙、RFID、ZigBee,背后代表了不同的利益方,而在包括工业物联网等行业之后,各种私有通信协议多达数十种。到现在我们都没有办法简单的将两个任意两个支持联网的设备相互连接,可以想象,物联网的发展还任重而道远。

智慧城市是物联网之集大成者,然而其概念从诞生到现在数十年了,我们没能看到一个成功的落地案例。

所以,物联网的发展不会像移动互联网一样一蹴而就,而是通过在共享单车上的应用,这样一个个案例积累起来逐渐进入我们的生活。

从当下的技术看未来

看了上面的盘点,你会发现云原生或者说真正的云计算是我们当下互联网技术发展的大趋势,在这个大趋势之下,推动不同的领域进行相应的发展。

其中的代表技术,就是机器学习、Kubernetes、Serverless,它们是当下这个时代技术发展的主旋律,如果你认同这个观点,你可以得出这样一个预测:

传统的应用开发将走向以容器、Serverless 为代表的真正的云计算,而随着终端和云的更深度的集成、物联网的发展、智能化的提升,云和端的界限会变得模糊,我们和理想中的互联网会更加接近。

信息技术的革命将把受制于键盘和显示器的计算机解放出来,使之成为我们能够与之交谈,与之一道旅行,能够抚摸甚至能够穿戴的对象。这些发展将变革我们的学习方式、工作方式、娱乐方式—一句话,我们的生活方式。

——尼葛洛庞帝《数字化生存》

《数字化生存》是 1996 年出版的,对于理想的互联网以前我们只是凭空的想象,而现在我们知道通过怎样的技术发展路径能抵达这个理想。

技术的本质与技术发展的逻辑

技术在不断的推陈出新,令人眼花缭乱,但如果抓住了这些技术的本质,会发现太阳底下并没有新鲜事。

如果将上面的各个领域的重要技术变革提炼一下,会发现其中的一些有共同点:

  • 虚拟化:将硬件资源虚拟为软件资源,然后进行统一调度和管理。

  • 隔离:从虚拟机到容器,再到虚拟机与容器融合,隔离的技术定义了云的形态。

  • 解耦:无论是后端的微服务、前端的前后端分离、组件化等等,都是将关注点分离,解耦合的过程。

  • 编排:大量不同的服务、任务,让他们组成一个整体,相互间能良好的协作。

  • 智能化:让服务个性化,或者让自动化替代以前需要人工完成的事情。

  • 实时化:计算和处理在极短时间内完成,从而实时的给予反馈。

当然,其中会有一些遗漏,或者有些你并不认同,但我想表达的是,这些技术存在一些共同的本质,它们是不同的领域技术发展的共同逻辑

再进一步:是什么在推动软件的发展?

上面我们已经知道了软件的常规发展趋势,可是,如何预测软件的颠覆式创新?要预测这个,我们需要更加深入去挖掘软件进步的源头。

软件并不是凭空发展起来的,它必须要运行在各种硬件上,软件的发展,也离不开硬件的支持。

或者说,正是硬件的不断升级和变革,支撑了软件的发展进步。云计算的诞生,正是源于大型机已经无法支撑高并发,才让人们转而采用一般硬件和虚拟化、分布式的软件技术。

软件的颠覆式创新,一定是在硬件支持的基础上,随着现有的软件架构对现有硬件能力的挖掘,再发生颠覆的可能性已经较小了。

当然,这并不是说不存在,如 Docker 和比特币的诞生,都没有利用特别新的硬件能力,更多的是现有软件发展积累到一定程度的质变。

但软件创新更多的可能性,则在于硬件的颠覆上。

AWS 推出的 Aurora 数据库就是一个很好的例子,它的诞生正是基于非易失性存储技术的重大进步。现在的趋势是,硬件的创新体现在软件上的时间会越来越短。

英特尔、英伟达研发的最新芯片,也都会被云厂商第一时间订购,充分利用硬件升级带来的性能提升。

最近,还有一个新趋势是软件厂商反过来驱动硬件的进步,谷歌、阿里、华为等都开始自研用于云和终端的芯片。

如果要预测软件的发展,我们不能不去看硬件可能带来的提升,这里我们从软件运行需要的三大资源入手:

  • 计算:AI 对于计算的特殊需求,催生了相关芯片的研发。而更多非通用性芯片将推动物联网边缘计算的发展。而在远处忽隐忽现的量子计算,一旦能普及,也必将产生颠覆。

  • 存储:Nano Flash 类非易失性存储还有提升的空间,在云和端的利用也没有普及。如果非易失性存储能在内存领域有所突破,对于软件架构必将带来另一次颠覆。

  • 网络:网络方面,WiFi 技术即将进入第六代,带来拥挤场合的大幅性能提升;蓝牙进入第五代,连接距离将提升至 300 米;更重要的则是 5G,相较于 4G 数百倍的数据传输速度和低至几毫米的延时,让很多应用都有了更大的想象空间。

对于技术发展的总结基本就到这里了。

选择技术是有风险的,如果是一家做 To B 或者 To C 的公司,选择了非主流的技术,只是会演变成长期的技术负债,但如果是一家面向开发者的云计算公司,选择错了技术则几乎注定了之后的衰落,无论是坚持下去还是切换成主流技术,都会因为错过最佳时机而步步艰难。这也是近年来新技术受到追捧的一个原因。

这种现象也导致了技术迭代的速度越来越快,开发者只要几年不关注新技术,就有一种被世界抛弃的错觉,于是每个人都很焦虑。

我希望用这篇文章,帮助你梳理技术的发展,知道正在发生什么,以及将会发生什么。只要知道了这些,想必不会那么焦虑了。

当然,由于个人能力所限,文章中不免有错漏之处,欢迎讨论交流。

对于当下的技术发展以及未来的技术趋势,你有什么可以分享的吗?欢迎留言告诉我们!

本文由机器之心经授权转载自InfoQ(ID:infoqchina ),未经授权禁止二次转载。

原文链接:https://mp.weixin.qq.com/s/ffhq4tG0UA0Is2IJLEJ2aQ

产业趋势人工智能区块链物联网
1
相关数据
Amazon机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
Microsoft机构

微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

https://www.microsoft.com/en-us/about
区块链技术

区块链是用分布式数据库识别、传播和记载信息的智能化对等网络, 也称为价值互联网。 中本聪在2008年,于《比特币白皮书》中提出“区块链”概念,并在2009年创立了比特币社会网络,开发出第一个区块,即“创世区块”。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

比特币技术

比特币是一种用去中心化、全球通用、不需第三方机构或个人,基于区块链作为支付技术的电子加密货币。比特币由中本聪于2009年1月3日,基于无国界的对等网络,用共识主动性开源软件发明创立。比特币也是目前知名度与市场总值最高的加密货币。 任何人皆可参与比特币活动,可以通过称为挖矿的电脑运算来发行。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

SSD技术

一种计算机视觉模型。论文发表于 2015 年(Wei Liu et al.)

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

MapReduce技术

MapReduce,一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是其主要思想,皆从函数式编程语言借用。它还借用了矢量编程语言的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

感知层技术

IoT (物联网) 三层结构中的一层,用于识别物体,采集信息等感知类的任务;另外两层是应用层(Application layer)和网络层(Network layer)。

操作系统技术

操作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内核与基石。操作系统需要处理如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

关系数据库技术

关系数据库,是创建在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。关系模型是由埃德加·科德于1970年首先提出的,并配合“科德十二定律”。现如今虽然对此模型有一些批评意见,但它还是数据存储的传统标准。

分布式计算技术技术

在计算机科学中,分布式计算,又译为分散式運算。这个研究领域,主要研究分布式系统如何进行计算。分布式系统是一组电脑,通过网络相互链接传递消息与通信后并协调它们的行为而形成的系统。组件之间彼此进行交互以实现一个共同的目标。

区块链技术技术

所谓区块链技术,简称BT(Blockchain technology),也被称之为分布式账本技术,是一种互联网数据库技术,其特点是去中心化、公开透明,让每个人均可参与数据库记录

暂无评论
暂无评论~