Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

周逸晟作者SIMIT战略研究室内容来自

信息产业革命新机遇——类脑芯片

随着世界数据量不断增加,目前摩尔定律下的处理器集成器件数量越发接近极限,当下急需通过架构的变化以应对大数据的需求。人工智能芯片也在此背景下崛起,目前已为大众所熟知的主流AI芯片架构包括:GPU,FPGA,ASIC,而类脑芯片由于其极强的学习能力也被抱以极高的期待。本文将就类脑芯片介绍其发展情况。

一、类脑芯片的由来

目前,传统的计算芯片主要基于冯•诺依曼结构。在这种结构中,计算模块和存储模块是分开的。CPU在执行命令时需要先从存储单位读取数据,这就产生延时及大量的功耗浪费。因此需要更为扁平化的结构能够更快,更低功耗的处理问题。而人脑的神经结构由于其强大的处理能力,动态可塑的性质,较低的能量消耗便成为了模拟对象,类脑芯片就此诞生。

冯•诺依曼结构

类脑芯片结构非常独特,可以仿照人类大脑的信息处理方式进行感知、思考、产生行为。人脑中的突触是神经元之间的连接,具有可塑性,能够随所传递的神经元信号强弱和极性调整传递效率,并在信号消失后保持传递效率。而模仿此类运作模式的类脑芯片便可实现数据并行传送,分布式处理,并能够以低功耗实时处理海量数据。

目前几乎所有的人工智能系统都需要进行人工建模,转化为计算问题进行处理再进行深度学习,而人脑却可以自动感知,进行问题分析和求解,决策控制等。因此类脑芯片也有望形成有自主认知的水平,可自动形式化建模。

二、类脑芯片的产业化

追溯类脑芯片的真正落地,还要从TrueNorth说起。TrueNorth 是 IBM 潜心研发近 10 年的类脑芯片。美国 DARPA 计划从 2008 年起就开始资助 IBM 公司研制面向智能处理的脉冲神经网络芯片。

2011年8月,IBM公司通过模拟大脑结构,首次研制出两个具有感知认知能力的硅芯片原型,可以像大脑一样具有学习和处理信息的能力。这两颗类脑芯片原型均采用45纳米绝缘体上硅CMOS工艺制作,包含256个神经元和256个轴突(数据传输通道)。其中一个芯片包含65356个学习突触,它能够发现新的神经元连接路径,可通过经验进行学习,并根据响应对神经元连接路径进行重组;而另一个芯片包含262144个可编程突触,可以根据预先设定,通过强化或弱化神经元之间的连接,更迅速、更高效地处理信息。类脑芯片的每个神经元都是交叉连接,具有大规模并行能力。但因技术上的限制,被IBM戏称为「虫脑」。

IDM TrueNorth类脑芯片

2014年8月,IBM公司推出名为「TrueNorth」的第二代类脑芯片。它使用了三星的28nm的工艺,包括54亿个晶体管和4096个处理核,相当于100万个可编程神经元,以及2.56亿个可编程突触。其性能相比于第一代有了不少提升。功耗每平方厘米消耗仅为 20 毫瓦,是第一代的百分之一,直径仅有几厘米,是第一代的十五分之一。

“TrueNorth”的每个处理核包含了约120万个晶体管,其中少量晶体管负责数据处理和调度,而大多数晶体管都用作数据存储、以及与其它核心的通信方面。此外,每个核心都有自己的本地内存,它们还能通过一种特殊的通信模式与其它核心快速沟通,其工作方式非常类似于人脑神经元与突触之间的协同,只不过,化学信号在这里变成了电流脉冲。IBM把这种结构称为“神经突触内核架构”,如果 48 颗TrueNorth芯片组建起具有 4800 万个神经元的网络,那这48颗芯片带来的智力水平将相似于普通老鼠。

16年,IBM又公布了与美国空军研究实验室、美国陆军研究实验室、以及劳伦斯•利物莫国家实验室在TrueNorth芯片应用方面合作的最新成果,包括手指识别、情绪识别、图像分类和对象追踪等。

2017年,英特尔发布了Loihi芯片,它采用了一种新颖的方式通过异步脉冲来计算,同时整合了计算和存储,模仿了大脑根据环境的各种反馈来学习如何操作的运作方式,可以利用数据来学习并做出推断,随着时间的推移也会变得更加的智能,并且不需要以传统方式来进行训练。

Intel Loihi类脑芯片

Loihi采用的是异构设计,由128个Neuromorphic Core(神经形态的核心)+3个低功耗的英特尔X86核心组成,号称拥有13万个神经元和1.3亿个触突。

与 TrueNorth 和Loihi不同, 高通公司开展研究的是Zeroth “认知计算平台”,曾在业界引起了巨大的震动。原因就在于它可以融入到高通公司量产的 Snapdragon处理器芯片中,以协处理的方式提升系统的认知计算性能,并可实际应用于手机和平板电脑等设备中,支持诸如语音识别、图像识别、场景实时标注等实际应用并且表现卓越。

三、中国的类脑芯片

中国也十分重视类脑研究,不仅在2015年将脑计划作为重大科技项目列入国家“十三五”规划,还发布了关于脑计划“一体两翼”的总体战略:一体即认识脑:以阐释人类认知的神经基础为主体和核心;两翼即保护脑:预防、诊断和治疗脑重大疾病和模拟脑:类脑计算。

中国的学术界也展开了对类脑的研究,2015 年中科院、清华、北大,相继成立“脑科学与类脑智能研究中心”,2017年5月在合肥成立了类脑智能技术及应用国家工程实验室。这些实验室将借鉴人脑机制攻关人工智能技术,推进类脑神经芯片、类脑智能机器人等新兴产业发展。

同时,国内也出现了专注类脑芯片研发的初创团队,像西井科技、AI-CTX、浙大的达尔文芯片等。

四、类脑芯片的最新进展

目前学术界有关类脑芯片也有了一些新的进展,17年清华大学微电子所钱鹤、吴华强课题组在《Nature Communications》在线发表了题为《使用电子突触阵列实现人脸识别》的研究成果,将氧化物忆阻器的集成规模提高了一个数量级,首次实现了基于1024个氧化物忆阻器阵列的类脑计算。该成果在最基本的单个忆阻器上实现了存储和计算的融合,采用完全不同于传统“冯•诺依曼架构”的体系,可以使芯片更加高效地完成计算任务,使能耗降低到原千分之一以下。

2018年,麻省理工的工程师设计了一种人造突触,可以实现精确控制流过这种突触的电流强度,即类似离子在神经元之间的流动。研究发表在《Nature Materials》上,这一成果也被认为是迈向用于模式识别和其它学习任务的便携式低功耗神经形态芯片的重要一步。

五、总结

类脑智能研究已取得了阶段性的进展,但是目前仍然没有任何一个智能系统能够接近人类水平,下一阶段类脑芯片的研究重点是增强神经计算电路模块的通用性,降低设计、制造的难度;此外,还需要迫切解决类脑计算芯片的功耗问题,比如探索超低功耗材料以及计算结构,为进一步提高类脑计算芯片的性能奠定基础。

未来,我们期待类脑计算领域的重大突破,为信息产业提供革命性的发展机遇。

半导体行业观察
半导体行业观察

最有深度的半导体新媒体,实时、专业、原创、深度,30万半导体精英关注!专注观察全球半导体最新资讯、技术前沿、发展趋势。

产业类脑芯片英特尔IBMTrueNorthLoihi模式识别人脸识别手势识别情绪识别图像分类
1
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
Qualcomm机构

高通公司(英语:Qualcomm,NASDAQ:QCOM)是一个位于美国加州圣地亚哥的无线电通信技术研发公司,由加州大学圣地亚哥分校教授厄文·马克·雅克布和安德鲁·维特比创建,于1985年成立。两人此前曾共同创建Linkabit。 高通公司是全球3G、4G与5G技术研发的领先企业,目前已经向全球多家制造商提供技术使用授权,涉及了世界上所有电信设备和消费电子设备的品牌。根据iSuppli的统计数据,高通在2007年度一季度首次一举成为全球最大的无线半导体供应商,并在此后继续保持这一领导地位。其骁龙移动智能处理器是业界领先的全合一、全系列移动处理器,具有高性能、低功耗、逼真的多媒体和全面的连接性。目前公司的产品和业务正在变革医疗、汽车、物联网、智能家居、智慧城市等多个领域。

http://www.qualcomm.com/
西井科技机构
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

脉冲神经网络技术

第三代神经网络,脉冲神经网络(Spiking Neural Network,SNN),旨在弥合神经科学和机器学习之间的差距,使用最拟合生物神经元机制的模型来进行计算。脉冲神经网络与目前流行的神经网络和机器学习方法有着根本上的不同。SNN 使用脉冲——这是一种发生在时间点上的离散事件——而非常见的连续值。每个峰值由代表生物过程的微分方程表示出来,其中最重要的是神经元的膜电位。本质上,一旦神经元达到了某一电位,脉冲就会出现,随后达到电位的神经元会被重置。对此,最常见的模型是 Integrate-And-Fire(LIF)模型。此外,SNN 通常是稀疏连接的,并会利用特殊的网络拓扑。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

推荐文章
暂无评论
暂无评论~