Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

周明 段楠 韦福如 刘树杰 张冬冬作者微软亚洲研究院来源

微软亚洲研究院:NLP将迎来黄金十年


比尔·盖茨曾说过,「语言理解是人工智能皇冠上的明珠」。自然语言处理(NLP,Natural Language Processing)的进步将会推动人工智能整体进展。

NLP 的历史几乎跟计算机和人工智能(AI)的历史一样长。自计算机诞生,就开始有了对人工智能的研究,而人工智能领域最早的研究就是机器翻译以及自然语言理解

在 1998 年微软亚洲研究院成立之初,NLP 就被确定为最重要的研究领域之一。历经二十载春华秋实,在历届院长支持下,微软亚洲研究院在促进 NLP 的普及与发展以及人才培养方面取得了非凡的成就。共计发表了 100 余篇 ACL 大会文章,出版了《机器翻译》和《智能问答》两部著作,培养了 500 名实习生、20 名博士和 20 名博士后。我们开发的 NLP 技术琳琅满目,包括输入法、分词、句法/语义分析、文摘、情感分析、问答、跨语言检索、机器翻译知识图谱聊天机器人、用户画像和推荐等,已经广泛应用于 Windows、Office、Bing、微软认知服务、小冰、小娜等微软产品中。我们与创新技术组合作研发的微软对联和必应词典,已经为成千上万的用户提供服务。

过去二十年,NLP 利用统计机器学习方法,基于大规模的带标注的数据进行端对端的学习,取得了长足的进步。尤其是过去三年来,深度学习给 NLP 带来了新的进步。其中在单句翻译、抽取式阅读理解、语法检查等任务上,更是达到了可比拟人类的水平。

基于如下的判断,我们认为未来十年是 NLP 发展的黄金档:

  1. 来自各个行业的文本大数据将会更好地采集、加工、入库。

  2. 来自搜索引擎、客服、商业智能、语音助手、翻译、教育、法律、金融等领域对 NLP 的需求会大幅度上升,对 NLP 质量也提出更高要求。

  3. 文本数据和语音、图像数据的多模态融合成为未来机器人的刚需。这些因素都会进一步促进对 NLP 的投资力度,吸引更多人士加入到 NLP 的研发中来。因此我们需要审时度势、抓住重点、及时规划,面向更大的突破。

因此,NLP 研究将会向如下几个方面倾斜:

  1. 将知识和常识引入目前基于数据的学习系统中。

  2. 低资源的 NLP 任务的学习方法。

  3. 上下文建模、多轮语义理解。

  4. 基于语义分析、知识和常识的可解释 NLP。

重点知识:NLP 的技术进展

自然语言处理,有时候也称作自然语言理解,旨在利用计算机分析自然语言语句和文本,抽取重要信息,进行检索、问答、自动翻译和文本生成。人工智能的目的是使得电脑能听、会说、理解语言、会思考、解决问题,甚至会创造。它包括运算智能、感知智能、认知智能和创造智能几个层次的技术。计算机在运算智能即记忆和计算的能力方面已远超人类。而感知智能则是电脑感知环境的能力,包括听觉、视觉和触觉等等,相当于人类的耳朵、眼睛和手。目前感知智能技术已取得飞跃性的进步;而认知智能包括自然语言理解、知识和推理,目前还待深入研究;创造智能目前尚无多少研究。比尔·盖茨曾说过,「自然语言理解人工智能皇冠上的明珠」。NLP 的进步将会推动人工智能整体进展。

NLP 在深度学习的推动下,在很多领域都取得了很大进步。下面,我们就来一起简单看看 NLP 的重要技术进展。

神经机器翻译

神经机器翻译就是模拟人脑的翻译过程。

翻译任务就是把源语言句子转换成语义相同的目标语言句子。人脑在进行翻译的时候,首先是尝试理解这句话,然后在脑海里形成对这句话的语义表示,最后再把这个语义表示转化到另一种语言。神经机器翻译就是模拟人脑的翻译过程,它包含了两个模块:一个是编码器,负责将源语言句子压缩为语义空间中的一个向量表示,期望该向量包含源语言句子的主要语义信息;另一个是解码器,它基于编码器提供的语义向量,生成在语义上等价的目标语言句子。

神经机器翻译模型的优势在于三方面:一是端到端的训练,不再像统计机器翻译方法那样由多个子模型叠加而成,从而造成错误的传播;二是采用分布式的信息表示,能够自动学习多维度的翻译知识,避免人工特征的片面性;三是能够充分利用全局上下文信息来完成翻译,不再是局限于局部的短语信息。基于循环神经网络模型的机器翻译模型已经成为一种重要的基线系统,在此方法的基础上,从网络模型结构到模型训练方法等方面,都涌现出很多改进。

神经机器翻译系统的翻译质量在不断取得进步,人们一直在探索如何使得机器翻译达到人类的翻译水平。2018 年,微软亚洲研究院与微软翻译产品团队合作开发的中英机器翻译系统,在 WMT2017 新闻领域测试数据集上的翻译质量达到了与人类专业翻译质量相媲美的水平 (Hassan et al., 2018)。该系统融合了微软亚洲研究院提出的四种先进技术,其中包括可以高效利用大规模单语数据的联合训练和对偶学习技术,以及解决曝光偏差问题的一致性正则化技术和推敲网络技术。

智能人机交互

智能人机交互包括利用自然语言实现人与机器的自然交流。其中一个重要的概念是「对话即平台」。

「对话即平台(CaaP,Conversation as a Platform)是微软首席执行官萨提亚·纳德拉 2016 年提出的概念,他认为图形界面的下一代就是对话,并会给整个人工智能、计算机设备带来一场新的革命。

萨提亚之所以提出这个概念是因为:首先,源于大家都已经习惯用社交手段,如微信、Facebook 与他人聊天的过程。我们希望将这种交流过程呈现在当今的人机交互中。其次,大家现在面对的设备有的屏幕很小(比如手机),有的甚至没有屏幕(比如有些物联网设备),语音交互更加自然和直观。对话式人机交互可调用 Bot 来完成一些具体的功能,比如订咖啡,买车票等等。许多公司开放了 CAAP 平台,让全世界的开发者都能开发出自己喜欢的 Bot 以便形成一个生态。

面向任务的对话系统比如微软的小娜通过手机和智能设备让人与电脑进行交流,由人发布命令,小娜理解并完成任务。同时,小娜理解你的习惯,可主动给你一些贴心提示。而聊天机器人,比如微软的小冰负责聊天。无论是小娜这种注重任务执行的技术,还是小冰这种聊天系统,其实背后单元处理引擎无外乎三层技术:第一层,通用聊天机器人;第二层,搜索和问答(Infobot);第三层,面向特定任务对话系统(Bot)。

聊天系统的架构

机器阅读理解

自然语言理解的一个重要研究课题是阅读理解。

阅读理解就是让电脑看一遍文章,针对这些文章问一些问题,看电脑能不能回答出来。机器阅读理解技术有着广阔的应用前景。例如,在搜索引擎中,机器阅读理解技术可以用来为用户的搜索(尤其是问题型的查询)提供更为智能的答案。我们通过对整个互联网的文档进行阅读理解,从而直接为用户提供精确的答案。同时,这在移动场景的个人助理,如微软小娜(Cortana)里也有直接的应用:智能客服中可使用机器阅读文本文档(如用户手册、商品描述等)来自动或辅助客服来回答用户的问题;在办公领域可使用机器阅读理解技术处理个人的邮件或者文档,然后用自然语言查询获取相关的信息;在教育领域用来可以用来辅助出题;在法律领域可用来理解法律条款,辅助律师或者法官判案;在金融领域里从非结构化的文本(比如新闻中)抽取金融相关的信息等。机器阅读理解技术可形成一个通用能力,第三方可以基于它构建更多的应用。

斯坦福大学在 2016 年 7 月发布了一个大规模的用于评测阅读理解技术的数据集(SQuAD),包含 10 万个由人工标注的问题和答案。SQuAD 数据集中,文章片段(passage)来自维基百科的文章,每个文章片段(passage)由众包方式,标注人员提 5 个问题,并且要求问题的答案是 passage 中的一个子片段。标注的数据被分成训练集和测试集。训练集公开发布用来训练阅读理解系统,而测试集不公开。参赛者需要把开发的算法和模型提交到斯坦福由其运行后把结果报在网站上。

一开始,以 100 分为例,人的水平是 82.3 左右,机器的水平只有 74 分,机器相差甚远。后来通过不断改进,机器阅读理解性能得以逐步地提高。2018 年 1 月,微软亚洲研究院提交的 R-Net 系统首次在 SQuAD 数据集上以 82.65 的精准匹配的成绩首次超越人类在这一指标上的成绩。随后阿里巴巴、科大讯飞和哈工大的系统也在这一指标上超越人类水平。标志着阅读理解技术进入了一个新的阶段。最近微软亚洲研究院的 NL-Net 和谷歌的 BERT 系统又先后在模糊匹配指标上突破人类水平。对于阅读理解技术的推动,除了 SQuAD 数据集起到了关键作用之外,还有如下三个方的因素:首先,是端到端的深度神经网络。其次,是预训练的神经网络;最后,是系统和网络结构上的不断创新。

机器创作

机器可以做很多理性的东西,也可以做出一些创造性的东西。

早在 2005 年,微软亚洲研究院在时任院长沈向洋的提议和支持下成功研发了《微软对联》系统。用户出上联,电脑对出下联和横批,语句非常工整。

在此基础上,我们又先后开发了格律诗和猜字谜的智能系统。在字谜游戏里,用户给出谜面,让系统猜出字,或系统给出谜面让用户猜出字。2017 年微软研究院开发了电脑写自由体诗系统、作词谱曲系统。中央电视台《机智过人》节目就曾播放过微软的电脑作词谱曲与人类选手进行词曲创作比拼的内容。这件事说明如果有大数据,那么深度学习就可以模拟人类的创造智能,也可以帮助专家产生更好的想法。

就作词来说,写一首歌词首先要决定主题。比如想写一首与「秋」,「岁月」,「沧桑」,「感叹」相关的歌,利用词向量表示技术,可知「秋风」、「流年」、「岁月」、「变迁」等词语比较相关,通过扩展主题可以约束生成的结果偏向人们想要的歌词,接着在主题模型的约束下用序列到序列神经网络,用歌词的上一句去生成下一句,如果是第一句,则用一个特殊的序列作为输入去生成第一句歌词,这样循环生成歌词的每一句。

下面也简介一下谱曲。为一首词谱曲不单要考虑旋律是否好听,也要考虑曲与词是否对应。这类似于一个翻译过程。不过这个翻译中的对应关系比自然语言翻译更为严格。它需严格规定每一个音符对应到歌词中的每一个字。例如每一句有 N 个字,那么就需要将这句话对应的曲切分成 N 个部分,然后顺序完成对应关系。这样在「翻译」过程中要「翻译」出合理的曲谱,还要给出曲与词之间的对应关系。我们利用了一个改进的序列到序列神经网络模型,完成从歌词「翻译」到曲谱的生成过程。

趋势热点:值得关注的 NLP 技术

从最近的 NLP 研究中,我们认为有一些技术发展趋势值得关注,这里总结了五个方面:

热点一,预训练神经网络

如何学习更好的预训练的表示,在一段时间内继续成为研究的热点。

通过类似于语言模型的方式来学习词的表示,其用于具体任务的范式得到了广泛应用。这几乎成为自然语言处理的标配。这个范式的一个不足是词表示缺少上下文,对上下文进行建模依然完全依赖于有限的标注数据进行学习。实际上,基于深度神经网络语言模型已经对文本序列进行了学习。如果把语言模型关于历史的那部分参数也拿出来应用,那么就能得到一个预训练的上下文相关的表示。这就是 Matthew Peters 等人在 2018 年 NAACL 上的论文「Deep Contextualized Word Representations」的工作,他们在大量文本上训练了一个基于 LSTM语言模型。最近 Jacob Delvin 等人又取得了新的进展,他们基于多层 Transformer 机制,利用所谓「MASKED」模型预测句子中被掩盖的词的损失函数和预测下一个句子的损失函数所预训练得到的模型「BERT」,在多个自然语言处理任务上取得了当前最好的水平。以上提到的所有的预训练的模型,在应用到具体任务时,先用这个语言模型LSTM 对输入文本得到一个上下文相关的表示,然后再基于这个表示进行具体任务相关的建模学习。结果表明,这种方法在语法分析、阅读理解、文本分类等任务都取得了显著的提升。最近一段时间,这种预训练模型的研究成为了一个研究热点。

如何学习更好的预训练的表示在一段时间内将继续成为研究的热点。在什么粒度(word,sub-word,character)上进行预训练,用什么结构的语言模型LSTM,Transformer 等)训练,在什么样的数据上(不同体裁的文本)进行训练,以及如何将预训练的模型应用到具体任务,都是需要继续研究的问题。现在的预训练大都基于语言模型,这样的预训练模型最适合序列标注的任务,对于问答一类任务依赖于问题和答案两个序列的匹配的任务,需要探索是否有更好的预训练模型的数据和方法。将来很可能会出现多种不同结构、基于不同数据训练得到的预训练模型。针对一个具体任务,如何快速找到合适的预训练模型,自动选择最优的应用方法,也是一个可能的研究课题。

热点二,迁移学习多任务学习

对于那些本身缺乏充足训练数据的自然语言处理任务,迁移学习有着非常重要和实际的意义。多任务学习则用于保证模型能够学到不同任务间共享的知识和信息。

不同的 NLP 任务虽然采用各自不同类型的数据进行模型训练,但在编码器(Encoder)端往往是同构的。例如,给定一个自然语言句子 who is the Microsoft founder,机器翻译模型、复述模型和问答模型都会将其转化为对应的向量表示序列,然后再使用各自的解码器完成后续翻译、改写和答案生成 (或检索) 任务。因此,可以将不同任务训练得到的编码器看作是不同任务对应的一种向量表示,并通过迁移学习(Transfer Learning)的方式将这类信息迁移到目前关注的目标任务上来。对于那些本身缺乏充足训练数据的自然语言处理任务,迁移学习有着非常重要和实际的意义。

多任务学习(Multi-task Learning)可通过端到端的方式,直接在主任务中引入其他辅助任务的监督信息,用于保证模型能够学到不同任务间共享的知识和信息。Collobert 和 Weston 早在 2008 年就最早提出了使用多任务学习深度学习框架下处理 NLP 任务的模型。最近 Salesforce 的 McCann 等提出了利用问答框架使用多任务学习训练十项自然语言任务。每项任务的训练数据虽然有限,但是多个任务共享一个网络结构,提升对来自不同任务的训练数据的综合利用能力。多任务学习可以设计为对诸任务可共建和共享网络的核心层次,而在输出层对不同任务设计特定的网络结构。

热点三,知识和常识的引入

如何在自然语言理解模块中更好地使用知识和常识,已经成为目前自然语言处理领域中一个重要的研究课题。

随着人们对人机交互(例如智能问答和多轮对话)要求的不断提高,如何在自然语言理解模块中更好地使用领域知识,已经成为目前自然语言处理领域中一个重要的研究课题。这是由于人机交互系统通常需要具备相关的领域知识,才能更加准确地完成用户查询理解、对话管理和回复生成等任务。

最常见的领域知识包括维基百科和知识图谱两大类。机器阅读理解是基于维基百科进行自然语言理解的一个典型任务。给定一段维基百科文本和一个自然语言问题,机器阅读理解任务的目的是从该文本中找到输入问题对应的答案短语片段。语义分析是基于知识图谱进行自然语言理解的另一个典型任务。给定一个知识图谱(例如 Freebase)和一个自然语言问题,语义分析任务的目的是将该问题转化为机器能够理解和执行的语义表示。目前,机器阅读理解和语义分析可以说是最热门的自然语言理解任务,它们受到了来自全世界研究者的广泛关注和深入探索。

常识指绝大多数人都了解并接受的客观事实,例如海水是咸的、人渴了就想喝水、白糖是甜的等。常识对机器深入理解自然语言非常重要,在很多情况下,只有具备了一定程度的常识,机器才有可能对字面上的含义做出更深一层次的理解。然而获取常识却是一个巨大的挑战,一旦有所突破将是影响人工智能进程的大事情。另外,在 NLP 系统中如何应用常识尚无深入的研究,不过出现了一些值得关注的工作。

热点四,低资源的 NLP 任务

引入领域知识(词典、规则)可以增强数据能力、基于主动学习的方法增加更多的人工标注数据等,以解决数据资源贫乏的问题。

面对标注数据资源贫乏的问题,譬如小语种的机器翻译、特定领域对话系统、客服系统、多轮问答系统等,NLP 尚无良策。这类问题统称为低资源的 NLP 问题。对这类问题,除了设法引入领域知识(词典、规则)以增强数据能力之外,还可以基于主动学习的方法来增加更多的人工标注数据,以及采用无监督和半监督的方法来利用未标注数据,或者采用多任务学习的方法来使用其他任务甚至其他语言的信息,还可以使用迁移学习的方法来利用其他的模型。

机器翻译为例,对于稀缺资源的小语种翻译任务,在没有常规双语训练数据的情况下,首先通过一个小规模的双语词典(例如仅包含 2000 左右的词对),使用跨语言词向量的方法将源语言和目标语言词映射到同一个隐含空间。在该隐含空间中, 意义相近的源语言和目标语言词具有相近的词向量表示。基于该语义空间中词向量的相似程度构建词到词的翻译概率表,并结合语言模型,便可以构建基于词的机器翻译模型。使用基于词的翻译模型将源语言和目标语言单语语料进行翻译,构建出伪双语数据。于是,数据稀缺的问题通过无监督的学习方法产生伪标注数据,就转化成了一个有监督的学习问题。接下来,利用伪双语数据训练源语言到目标语言以及目标语言到源语言的翻译模型,随后再使用联合训练的方法结合源语言和目标语言的单语数据,可以进一步提高两个翻译系统的质量。

为了提高小语种语言的翻译质量,我们提出了利用通用语言之间大规模的双语数据,来联合训练四个翻译模型的期望最大化训练方法(Ren et al., 2018)。该方法将小语种(例如希伯来语)作为有着丰富语料的语种(例如中文)和(例如英语)之间的一个隐含状态,并使用通用的期望最大化训练方法来迭代地更新 X 到 Z、Z 到 X、Y 到 Z 和 Z 到 Y 之间的四个翻译模型,直至收敛

热点五,多模态学习

视觉问答作为一种典型的多模态学习任务,在近年来受到计算机视觉和自然语言处理两个领域研究人员的重点关注。

婴儿在掌握语言功能前,首先通过视觉、听觉和触觉等感官去认识并了解外部世界。可见,语言并不是人类在幼年时期与外界进行沟通的首要手段。因此,构建通用人工智能也应该充分地考虑自然语言和其他模态之间的互动,并从中进行学习,这就是多模态学习

视觉问答作为一种典型的多模态学习任务,在近年来受到计算机视觉和自然语言处理两个领域研究人员的重点关注。给定一张图片和用户提出的一个自然语言问题,视觉问答系统需要在理解图片和自然语言问题的基础上,进一步输入该问题对应的答案,这需要视觉问答方法在建模中能够对图像和语言之间的信息进行充分地理解和交互。

我们在今年的 CVPR 和 KDD 大会上分别提出了基于问题生成的视觉问答方法(Li et al., 2018)以及基于场景图生成的视觉问答方法(Lu et al., 2018),这两种方法均在视觉问答任务上取得了非常好的结果,实现了 state-of-the-art 的效果。除视觉问答外,视频问答是另一种最近广受关注的多模态任务。该任务除了包括带有时序的视频信息外,还包括了音频信息。目前,视频问答作为一种新型的问答功能,已经出现在搜索引擎的场景中。可以预见,该任务在接下来一定还会受到更多的关注。

未来展望:理想的 NLP 框架和发展前景

我们认为,未来理想状态下的 NLP 系统架构可能是如下一个通用的自然语言处理框架:

首先,对给定自然语言输入进行基本处理,包括分词、词性标注、依存分析、命名实体识别、意图/关系分类等。

其次,使用编码器对输入进行编码将其转化为对应的语义表示。在这个过程中,一方面使用预训练好的词嵌入和实体嵌入对输入中的单词和实体名称进行信息扩充,另一方面,可使用预训练好的多个任务编码器对输入句子进行编码并通过迁移学习对不同编码进行融合。

接下来,基于编码器输出的语义表示,使用任务相关的解码器生成对应的输出。还可引入多任务学习将其他相关任务作为辅助任务引入到对主任务的模型训练中来。如果需要多轮建模,则需要在数据库中记录当前轮的输出结果的重要信息,并应用于在后续的理解和推理中。

显然,为了实现这个理想的 NLP 框架需要做很多工作:

  • 需要构建大规模常识数据库并且清晰通过有意义的评测推动相关研究;

  • 研究更加有效的词、短语、句子的编码方式,以及构建更加强大的预训练的神经网络模型;

  • 推进无监督学习和半监督学习,需要考虑利用少量人类知识加强学习能力以及构建跨语言的 embedding 的新方法;

  • 需要更加有效地体现多任务学习迁移学习在 NLP 任务中的效能,提升强化学习在 NLP 任务的作用,比如在自动客服的多轮对话中的应用;

  • 有效的篇章级建模或者多轮会话建模和多轮语义分析

  • 要在系统设计中考虑用户的因素,实现用户建模和个性化的输出;

  • 构建综合利用推理系统、任务求解和对话系统,基于领域知识和常识知识的新一代的专家系统;

  • 利用语义分析和知识系统提升 NLP 系统的可解释能力。

未来十年,NLP 将会进入爆发式的发展阶段。从 NLP 基础技术到核心技术,再到 NLP+的应用,都会取得巨大的进步。比尔盖茨曾经说过人们总是高估在一年或者两年中能够做到的事情,而低估十年中能够做到的事情。

我们不妨进一步想象十年之后 NLP 的进步会给人类生活带来哪些改变?

  • 十年后,机器翻译系统可以对上下文建模,具备新词处理能力。那时候的讲座、开会都可以用语音进行自动翻译。除了机器翻译普及,其他技术的进步也令人耳目一新。家里的老人和小孩可以跟机器人聊天解闷。

  • 机器个人助理能够理解你的自然语言指令,完成点餐、送花、购物等下单任务。你已习惯于客服机器人来回答你的关于产品维修的问题。

  • 你登临泰山发思古之幽情,或每逢佳节倍思亲,拿出手机说出感想或者上传一幅照片,一首情景交融、图文并茂的诗歌便跃然于手机屏幕上,并且可以选择格律诗词或者自由体的表示形式,亦可配上曲谱,发出大作引来点赞。

  • 可能你每天看到的体育新闻、财经新闻报道是机器人写的。

  • 你用手机跟机器人老师学英语,老师教你口语,纠正发音,跟你亲切对话,帮你修改论文。

  • 机器人定期自动分析浩如烟海的文献,给企业提供分析报表、辅助决策并做出预测。搜索引擎的智能程度大幅度提高。很多情况下,可以直接给出答案,并且可以自动生成细致的报告。

  • 利用推荐系统,你关心的新闻、书籍、课程、会议、论文、商品等可直接推送给你。

  • 机器人帮助律师找出判据,挖掘相似案例,寻找合同疏漏,撰写法律报告。

  • ……

未来,NLP 将跟其他人工智能技术一道深刻地改变人类的生活。当然前途光明、道路曲折是亘古不变的道理,为了实现这个美好的未来,我们需要大胆创新、严谨求实、扎实进取。讲求研究和应用并举,普及与提高同步。我们期待着与业界同仁一道努力,共同走进 NLP 下一个辉煌的十年。

产业微软微软亚洲研究院NLP
7
相关数据
微软亚洲研究院机构

微软亚洲研究院于1998年在北京成立,是微软公司在亚太地区设立的基础及应用研究机构,也是微软在美国本土以外规模最大的一个研究院。微软亚洲研究院从事自然用户界面、智能多媒体、大数据与知识挖掘、人工智能、云和边缘计算、计算机科学基础等领域的研究,致力于推动计算机科学前沿发展,着眼下一代革命性技术的创新,助力微软实现长远发展战略。

http://www.msra.cn
科大讯飞机构

科大讯飞股份有限公司成立于1999年,是亚太地区知名的智能语音和人工智能上市企业。自成立以来,长期从事语音及语言、自然语言理解、机器学习推理及自主学习等核心技术研究并保持了国际前沿技术水平;积极推动人工智能产品研发和行业应用落地,致力让机器“能听会说,能理解会思考”,用人工智能建设美好世界。2008年,公司在深圳证券交易所挂牌上市。

http://www.iflytek.com
沈向洋人物

微软全球执行副总裁,美国工程院院士。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

查询理解技术

基于Transformer 的双向编码器表征技术

BERT是谷歌发布的基于双向 Transformer的大规模预训练语言模型,该预训练模型能高效抽取文本信息并应用于各种NLP任务,并刷新了 11 项 NLP 任务的当前最优性能记录。BERT的全称是基于Transformer的双向编码器表征,其中“双向”表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息。

专家系统技术

专家系统(ES)是人工智能最活跃和最广泛的领域之一。专家系统定义为:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论。简言之,如图1所示,专家系统可视作“知识库(knowledge base)”和“推理机(inference machine)” 的结合。

半监督学习技术

半监督学习属于无监督学习(没有任何标记的训练数据)和监督学习(完全标记的训练数据)之间。许多机器学习研究人员发现,将未标记数据与少量标记数据结合使用可以显着提高学习准确性。对于学习问题的标记数据的获取通常需要熟练的人类代理(例如转录音频片段)或物理实验(例如,确定蛋白质的3D结构或确定在特定位置处是否存在油)。因此与标签处理相关的成本可能使得完全标注的训练集不可行,而获取未标记的数据相对便宜。在这种情况下,半监督学习可能具有很大的实用价值。半监督学习对机器学习也是理论上的兴趣,也是人类学习的典范。

视觉问答技术

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

自然语言理解技术

自然语言理解是人工智能的核心课题之一,也被广泛认为是最困难和最具标志性的任务。最经典的两个人工智能思想实验——图灵测试和中文房间,都是围绕自然语言理解来构建的。自然语言理解在人工智能技术体系中的重要性不言而喻,它一方面承载着机器和人的交流,另一方面直达知识和逻辑。自然语言理解也是人工智能学者孜孜以求的圣杯,机器学习的巨擘 Michael I. Jordan 就曾经在 Reddit 上的 AMA(Ask Me Anything)栏目中畅想用十亿美元建立一个专门用于自然语言理解的实验室。

神经机器翻译技术

2013 年,Nal Kalchbrenner 和 Phil Blunsom 提出了一种用于机器翻译的新型端到端编码器-解码器结构 [4]。该模型可以使用卷积神经网络(CNN)将给定的一段源文本编码成一个连续的向量,然后再使用循环神经网络(RNN)作为解码器将该状态向量转换成目标语言。他们的研究成果可以说是神经机器翻译(NMT)的诞生;神经机器翻译是一种使用深度学习神经网络获取自然语言之间的映射关系的方法。NMT 的非线性映射不同于线性的 SMT 模型,而且是使用了连接编码器和解码器的状态向量来描述语义的等价关系。此外,RNN 应该还能得到无限长句子背后的信息,从而解决所谓的「长距离重新排序(long distance reordering)」问题。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

词嵌入技术

词嵌入是自然语言处理(NLP)中语言模型与表征学习技术的统称。概念上而言,它是指把一个维数为所有词的数量的高维空间嵌入到一个维数低得多的连续向量空间中,每个单词或词组被映射为实数域上的向量。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

多模态学习技术

现实世界中的信息通常以不同的模态出现。例如,图像通常与标签和文本解释联系在一起;文本包含图像以便更清楚地表达文章的主要思想。不同的模态由迥异的统计特性刻画。例如,图像通常表示为特征提取器的像素强度或输出,而文本则表示为离散的词向量。由于不同信息资源的统计特性不同,发现不同模态之间的关系是非常重要的。多模态学习是一个很好的模型,可以用来表示不同模态的联合表示。多模态学习模型也能在观察到的情况下填补缺失的模态。多模态学习模型中,每个模态对应结合了两个深度玻尔兹曼机(deep boltzmann machines).另外一个隐藏层被放置在两个玻尔兹曼机上层,以给出联合表示。

商业智能技术

商业智能(Business Intelligence,BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

语义分析技术

语义分析是编译过程的一个逻辑阶段, 语义分析的任务是对结构上正确的源程序进行上下文有关性质的审查,进行类型审查。语义分析是审查源程序有无语义错误,为代码生成阶段收集类型信息。比如语义分析的一个工作是进行类型审查,审查每个算符是否具有语言规范允许的运算对象,当不符合语言规范时,编译程序应报告错误。如有的编译程序要对实数用作数组下标的情况报告错误。又比如某些程序规定运算对象可被强制,那么当二目运算施于一整型和一实型对象时,编译程序应将整型转换为实型而不能认为是源程序的错误。

词性标注技术

词性标注是指为分词结果中的每个单词标注一个正确的词性的程序,也即确定每个词是名词、动词、形容词或其他词性的过程。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

命名实体识别技术

命名实体识别(NER)是信息提取(Information Extraction)的一个子任务,主要涉及如何从文本中提取命名实体并将其分类至事先划定好的类别,如在招聘信息中提取具体招聘公司、岗位和工作地点的信息,并将其分别归纳至公司、岗位和地点的类别下。命名实体识别往往先将整句拆解为词语并对每个词语进行此行标注,根据习得的规则对词语进行判别。这项任务的关键在于对未知实体的识别。基于此,命名实体识别的主要思想在于根据现有实例的特征总结识别和分类规则。这些方法可以被分为有监督(supervised)、半监督(semi-supervised)和无监督(unsupervised)三类。有监督学习包括隐形马科夫模型(HMM)、决策树、最大熵模型(ME)、支持向量机(SVM)和条件随机场(CRF)。这些方法主要是读取注释语料库,记忆实例并进行学习,根据这些例子的特征生成针对某一种实例的识别规则。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

统计机器翻译技术

随着统计学的发展,研究者开始将统计模型应用于机器翻译,这种方法是基于对双语文本语料库的分析来生成翻译结果。这种方法被称为统计机器翻译(SMT)

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

对话系统技术

对话系统大致被分成两类: 任务为导向的对话系统,帮助用户去完成特定任务,比如找商品,订住宿,订餐厅等。实现任务为导向的对话系统,主要有两类方式,流水线方法和端到端方法。非任务导向的对话系统,与用户进行互动并提供回答,简单的说,就是在开放领域的闲聊。实现非任务导向对话系统也主要可分为两类,生成方法和基于检索的方法。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

序列到序列技术

主动学习技术

主动学习是半监督机器学习的一个特例,其中学习算法能够交互式地查询用户(或其他信息源)以在新的数据点处获得期望的输出。 在统计学文献中,有时也称为最佳实验设计。

多任务学习技术

主题模型技术

主题模型(Topic Model)在机器学习和自然语言处理等领域是用来在一系列文档中发现抽象主题的一种统计模型。直观来讲,如果一篇文章有一个中心思想,那么一些特定词语会更频繁的出现。比方说,如果一篇文章是在讲狗的,那“狗”和“骨头”等词出现的频率会高些。如果一篇文章是在讲猫的,那“猫”和“鱼”等词出现的频率会高些。而有些词例如“这个”、“和”大概在两篇文章中出现的频率会大致相等。但真实的情况是,一篇文章通常包含多种主题,而且每个主题所占比例各不相同。因此,如果一篇文章10%和猫有关,90%和狗有关,那么和狗相关的关键字出现的次数大概会是和猫相关的关键字出现次数的9倍。一个主题模型试图用数学框架来体现文档的这种特点。主题模型自动分析每个文档,统计文档内的词语,根据统计的信息来断定当前文档含有哪些主题,以及每个主题所占的比例各为多少。

长短期记忆网络技术

长短期记忆(Long Short-Term Memory) 是具有长期记忆能力的一种时间递归神经网络(Recurrent Neural Network)。 其网络结构含有一个或多个具有可遗忘和记忆功能的单元组成。它在1997年被提出用于解决传统RNN(Recurrent Neural Network) 的随时间反向传播中权重消失的问题(vanishing gradient problem over backpropagation-through-time),重要组成部分包括Forget Gate, Input Gate, 和 Output Gate, 分别负责决定当前输入是否被采纳,是否被长期记忆以及决定在记忆中的输入是否在当前被输出。Gated Recurrent Unit 是 LSTM 众多版本中典型的一个。因为它具有记忆性的功能,LSTM经常被用在具有时间序列特性的数据和场景中。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

问答系统技术

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

推荐文章
暂无评论
暂无评论~