作为深耕云计算领域的创新企业,UCloud 于今年年初提出了“ CBA ”(Cloud,Bigdata,AI)三位一体发展战略,并发布了UAI(人工智能)系列产品,包含超高性价比 GPU、UAI-Train、UAI-Service 和安全屋等AI产品,已构筑起一站式AI全服务。
UCloud 不仅为 AI 企业提供极具性价比的计算资源,还凭借体系化的混合云解决方案为 AI 企业的数据安全提供保障。目前,UCloud 已经与格灵深瞳、第四范式等 AI领域标杆企业建立了合作关系。
UCloud 对云计算行业有哪些新的解读?人工智能为云厂商带了哪些挑战和机遇?带着这些疑问,AI 前线采访了 UCloud 创新产品线研发总监叶理灯。
嘉宾介绍
叶理灯
拥有 10 年丰富的互联网研发经验,先后任职于腾讯、盛大云等互联网公司,从事海量分布式后台系统研发及运营,现负责 UCloud 创新产品研发,专注面向企业的云计算产品的研发及运营。
AI 前线:从联合创立 UCloud 到今年 3 月完成 9.6 亿元 D 轮融资,再到今天,您有哪些创业经验可供其他技术创业者借鉴呢?
叶理灯:UCloud 拿到 9.6 亿融资不能说算是成功了,只能说是阶段性的胜利。融资成功说明资本市场对我们的认可,这个认可是基于我们对用户所提供的价值。如果说可以有什么经验提供给其他技术创业者的话,我的第一个观点就是定位好自己,从给用户提供的价值出发,做有价值的产品及服务,自然会有来自市场的回报。2012 年 UCloud 创立的时候,国内的云计算处于全面落地的前夜,尽管当时国内也有不少厂商在做云计算,但都不成熟,产品和服务都离用户的需求有点远,我们创立 UCloud 是抱着提供更好的产品和更好的服务给用户这一愿景,这个就是价值。那个阶段处在云计算革 IDC 的命开始阶段,各云厂商都在努力把云计算的市场做大。
第二点是创新。从 UCloud 举例,一个创业公司做云计算这种重资产的领域,刚开始是没多少人看好我们的。我们没有大腿可抱,没有钱,这就逼着我们从技术和商业模式上做创新,去克服我们第一阶段资源缺乏的困难。这里说两个案例,在技术上,我们通过开发一个 IO 加速模块,让我们的虚拟机在普通存储介质上具备类似 SSD 的 IO 能力,一方面节省用户的成本,一方面提供好的体验。另外一个案例,我们一开始的时候没有资金购买物理无服务器,为此我们改变传统的自己购买服务器然后做虚拟化的模式,通过和服务器厂商合作分成的方式,避免一次性投入太多现金购买服务器,这个模式让我们成功度过了资金不足的阶段。
第三点是坚持。UCloud 走到今天,肯定有运气的成分,但是我觉得跟公司这帮人的坚持是有很大关系的。在那时候,我们的人力和资源配备跟巨头没法比,那我们的前途在哪里呢?第一,要想清楚自己的定位:这个行业是可为的,能为用户带来价值,而且这个行业还远远没成熟。抓住了用户才会抓住根本,就能抓住根本。第二,一定要坚持做下去,坚持才能有希望。如果一遇到困难就退缩的话,UCloud 就没有今天。这是我的经验,一定要坚持。为什么很多公司会倒下?为什么能留下来的公司很少?我觉得除了大势的原因,比如这个行业被淘汰了,另外就是跟创业者的韧劲有很大关系。
最后,做正确的事情很重要。UCloud 能走到今天,另外一个经验就是创业的点选择得也比较好。那时候云计算在国内没有真正落地,2012 年整个中国对云计算的接受程度还比较低。我们推出产品的时候并不算晚,而且我们选择了移动游戏行业。移动游戏的架构比较简单,天生对云计算接受程度比较高,而且创业公司对云计算是比较容易接受的——因为它可以很好地帮创业公司节省现金流。由于架构简单,移动游戏厂商采用云计算也没有什么很大的障碍,我们抓住这个机会,也引发了整个云计算在中国落地的里程碑事件。UCloud 很好地抓住这个机会,后来拓展到整个创业公司,到现在我们全面铺开。抓住某个时间点和机会是比较重要的——不是单纯靠努力和艰苦就能成功的。
AI 前线:您如何看待云厂商的混战阶段和深耕阶段?
叶理灯:我觉得,目前云计算厂商之间是有竞争,但是还没有到混战阶段。我觉得中国的云计算发展程度比国外晚,从具体产品可以看出来,国内对有些产品接受程度不高。这跟中国的 IT 发展水平有关系。从我的个人经验来说,刚开始做云计算的时候,用户常问,你们云计算和传统 IDC 相比,优点在哪里?目前也是经常被这样问。这意味着,IDC 还存在着很大的市场等待云计算厂商去拓展。云计算要革 IDC 的命。尤其是,在很多传统的行业,包括政府、医疗、教育,云计算的渗透率还是很低的。现在是蛋糕还没有做到足够大,没有到云计算厂商完成革命去分蛋糕的阶段。云计算厂商各有优劣,不是替代关系,目前还是大家不断拓展云计算边界做大蛋糕的阶段。
AI 前线:人工智能给 UCloud 和行业带来了哪些机遇和挑战呢?
叶理灯:如果把人工智能当火箭,他需要三个方面的动力,第一是数据,第二是算法,第三是计算能力。云计算是计算能力的很好的选择。正是云计算的建设导致企业能很好很快地获取 AI 的能力,这才能导致这波人工智能浪潮的落地速度比前两波浪潮更大和更快。
人工智能的前两波浪潮经历了从春天到冬天,本质原因在哪里?主要是,理论给了大家的很高的预期,迎来了春天;但是实际运用下来达不到预期,所以进入冬天。在现在这波浪潮中,有很多产品是有落地的,比如计算机视觉、图片视觉、安防、自动驾驶,所以我觉得这波浪潮会持续很长时间。
我觉得人工智能算一个技术,而不是一个行业。人工智能落地,一定是在各个行业里落地。渗透到行业里去,这才是人工智能的价值所在。这跟云计算有点类似。回头来看,现在人工智能的浪潮在国内可以称为上半场,做应用也好算法也好,融一笔钱,看着很不错。那下半场就是,很多传统的产业利用 AI 帮他们提高生产效率,实现行业落地。
我举个例子。一个纺织业客户,他们织布会有残次品。如果通过人工分辨,效率太低了。为什么不可以通过智能图片识别的方式去判断是不是合格?什么意思呢?人工智能要渗透到行业里,而每个行业的 IT 水平是参差不齐的,应该怎么落地?这个时候,云计算是辅助人工智能落地的加速器,各个行业的计算能力、算法、数据的能力都可以通过云计算进行补齐——云计算厂商在这些方面都是很成熟的。
UCloud 的优势和挑战在哪里?人工智能涉及到算法、数据和计算能力。UCloud 是中立的平台,下不碰数据,上不碰应用。我们和做 AI 应用的公司是没有竞争的。我们会提供平台,但不是传统的平台。我们专门做了一些更加易用的平台,除了云计算的数据处理之外,还有 AI 训练、模型推理等功能,辅助人工智能落地。我们中立,不做人工智能相关的应用,这样我们提供了易用的平台帮助人工智能落地,帮助传统行业减少在人工智能建设方面的成本。
AI 前线:您负责的 UCloud 创新实验室主要在做什么?可以分享一些成果吗?
叶理灯:UCloud 创新实验室包含两个部门,一个是人工智能部门,包括人工智能训练服务 UAI-Train 和人工智能在线服务 UAI-Service。UAI-Train 是一种 PaaS 服务,用户只需要提供 Docker 镜像和训练数据,UAI-Train 能够自动为其训练任务创建运行环境(Docker容器),并调用 GPU 计算资源为用户提供高性能计算服务。值得一提的是,该产品按需计费,精确到分钟,极大地降低 AI 的成本投入,避免闲置资源的浪费。而 UAI-Service 可以提供海量计算节点,自动负载均衡,动态扩缩容,同时提供高可用性、高安全性和高功能性保障;同样是按需收费,灵活便捷。另外一个是应用创新部,基于 IaaS 平台让企业用户更加方便地使用云计算,比如有容器服务 Container Service,有 Serverless 服务、通用计算服务。
UCloud AI 架构图
实验室的另一个使命是,通过内部产品重构 UCloud 软件架构。做平台的思路就是,先吃自己的狗粮嘛,eat your own dog food,在我们内部使用确认稳定之后,才对外公布和提供给用户。同时我们会采用一系列机制来保证创新,比如根据最新科技动态、友商资讯和行业需求,做技术研发并整合到平台上,做成产品进行固化。
AI 前线:方便分享具体的客户案例吗?
叶理灯:我分享三个案例。
第一个案例是我们推出的通用计算服务。之前,有在线教育客户买了 UCloud 的物理机,他们用到了人工智能的 OCR 识别图片中的文字。他们直接使用物理机会有很多问题,第一是成本很高,第二是要有专人维护,同时为了压榨物理机的性能,他们就需要在写算法的时候把 Server 写得很好。我们推出通用计算产品之后,他们觉得很好用。他们的物理机直接调用我们的 API,他们不用管后端了,十分简便;同时,计算资源成本大大降低了,大概节省了 97%,之前 50000 块钱,现在只要 150 块钱,这是一个比较经典的案例。通过我们的创新产品,解决人工智能计算和成本问题,而且平台做得好,可以自动扩展,还有跨机房容灾,给客户创来很大的价值。
第二个案例是做基因检测分析的用户,比如分析你的祖先起源于哪里。他们要做成算法开放平台,允许用户上传自己的算法,进行相关的分析。这时候,他们面对的问题是如何选择架构,比如算法怎么打包、如何给用户提供报告。他们觉得 UCloud 的产品很好用,直接调用自己的算法把请求转给我们的 API,这样下来,他们的开放平台架构非常简单,成本也很低,很快就搭出来了。这个平台已经成功运行了半年时间。
还有我们刚推出人工智能训练 UAI-Train 的时候,创新工厂、今日头条和搜狗联合推出 AI Challenger 全球 AI 挑战赛,五大赛道的后台训练全部都是采用 UCloud 的 AI 训练平台。
AI 前线:对于企业落地人工智能,有哪些建议?
叶理灯:我的建议是,走现实的道路,找到切入点。看看在你们公司和产品的体验里,哪些东西是可以用到人工智能的,帮助提高体验也好,提高生产效率也好,降低成本也好。要找一个点去切入,根据自己的问题,去想办法用人工智能解决问题,而不是追求热点,盲目地搭一套人工智能平台。
AI 前线:您如何看待人工智能的火爆?
叶理灯:普通人感受到的人工智能比较火应该是源于去年 AlphaGo 和李世石的围棋大战。人工智能在不同领域的发展是不一样,比如苹果 Siri 也是人工智能。谷歌推出 TensorFlow,可以让每个人低成本地建立自己感兴趣的小型应用。一项技术能落地甚至变成风潮,根本原因是它的实际价值落地成本。他的落地费用不高的时候,自然就会广泛应用。现在很多大机构都有很多黑科技,没有公布出来不是因为科技不成熟或者技术不可靠。不是的,是因为这个东西量产成本太高。比如前两天我的某个 APP 密码忘记了,找回密码很费劲的,需要短信验证、身份证信息。但是现在有人脸识别,直接对着摄像头就能很方便就找回密码了。如果人脸识别的成本很高的,那这个也是要收费的、不会这么普及。人工智能技术发展到一定程度,云计算也起了很大的功劳,因为云计算促使相关的技术都变得便宜了,很多高精尖的技术可以直接应用了。这是我个人观点。
AI 前线:云计算跟人工智能的结合还有更大的空间吗?
叶理灯:我觉得还是有的。计算能力不用说了,云计算本身具备很强的计算能力。随着云计算的发展,可能以后 80% 的数据都会在云计算上。数据和计算能力都在云计算上面,再用云计算做人工智能的算法,最后云计算跟人工智能越来越紧密,或者说,云计算会成为人工智能的基础设施。
AI 前线:您最期待的人工智能应用场景有哪些?
叶理灯:这个很难预测了。大家对人工智能比较忧虑的是,很怕自己的岗位被机器人代替。有些行业可能会有这个问题,比如说自动驾驶出来后,很多人都不用开车了。但是很多行业不会,比如你是个设计师,是要设计海报的,而不是做一些重复劳动,那人工智能会是更好的辅助。
我们现在遇到很多的客户,他们会让人工智能和机器做重复性的机械性的东西,人会更加专注做创造性的东西,我觉得这是个大方向。人工智能有强烈的行业属性,各个行业面临的问题是不一样的。最后会变成什么样子,有赖于各个行业同仁的努力。
AI 前线:您怎样引领和激励团队的创新呢?
叶理灯:创新最重要是不要限制。
当然了,没有限制是很难的,比如做工程会有很多标准,研发要有过程,控制代码质量有流程,编码要有编码规范,测试要有自动化测试、单元测试、性能测试。在 UCloud,项目是否立项,是个群策群力的过程,让大家投票决定,让大家都有参与感,充分表达自己的意见。每个人都有局限性,如果说都是由我来控制整个过程,那我就成为了瓶颈。
确定项目大的方向之后,我们支持不断试错。试错就是要快、成本要低,10 个方向有两个成功,对我们也是好结果。
AI 前线:对 UCloud 的未来有怎样的期待?
叶理灯:我希望 UCloud 能更加茁壮成长,能有越来越多优秀人才加入 UCloud。UCloud 的发展壮大一定需要更多的新的优秀人才加入进来。to B 行业非常累,但是发展比较稳,不像 to C 行业会快速地起起落落。我希望 UCloud 保持初心,跟用户站在一起,为用户创造价值。这是最根本的。