Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

点内科技来源

点内科技、华东医院及上海交大合著论文:3D深度学习在CT影像预测早期肿瘤浸润方面超过影像专家

本研究利用高效的、多任务的 3D 卷积神经网络 DenseSharp,同时进行分类和分割,旨在研究从 CT 影像预测早期肿瘤病理浸润深度学习和放射专家的准确度。 

点内科技、复旦大学附属华东医院「张国桢肺微小结节诊治中心」和上海交通大学「SJTU-UCLA 机器感知与推理联合研究中心」组成的联合研究团队共同合作的科研成果「3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas」发表于美国癌症研究协会(American Association for Cancer Research,AACR)会刊《Cancer Research》期刊上,华东医院李铭教授为本篇论文的通讯作者,赵伟博士和杨健程博士为共同第一作者。

《Cancer Research》创办于 1916 年,为国际肿瘤研究领域引用率最高的权威期刊之一,主要发表包括基础研究、临床前及临床、肿瘤预防及生物治疗在内的肿瘤学原创研究论文和综述文章,具有很高的国际影响力,2017 年影响因子高达 9.13。这一成果的发布是 AI 医疗领域重要的里程碑,意味着机器学习工具开始在医疗实践中产生重要影响,该研究能帮助医生选择早期肺癌的治疗方法,将有利于推动精准医疗。

3D 卷积神经网络 DenseSharp 在医学影像领域的应用

论文「3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas」于 2018 年 10 月 2 日在线发表,文章利用深度学习的方法对像素级标注的亚厘米肺腺癌 CT 数据和其病理结果标注进行训练,并通过多任务的卷积神经网络对亚厘米肺腺癌的浸润风险程度进行自动术前预测。通过建立医疗影像上的 taskonomy(任务谱),逐步使医疗影像的研究脱离西西弗斯式的悲剧(Sisyphean challenge),合理的任务配置将会极大降低模型的学习难度、迁移泛化能力、稳定性和可靠性。该模型基于 3D DenseNets,配合多任务学习,是参数高效(parameter-efficient)的 3D 卷积神经网络。训练完成后,模型只需要常规的 CT 数据,不需要肺结节分割、大小以及任何预先定义的信息。我们的多任务学习模型显著优于单任务模型,并且 3D 模型也显著优于其 2D 变种。为推进可复现的人工智能研究,基于 Keras 的模型代码开源(Apache-2.0 License)在 https://github.com/duducheng/DenseSharp

在 128 例测试集上,多任务深度学习模型预测的结果优于 4 位放射科医生(两位高年资医师和两位低年资医生)的评价结果;我们训练的多任务深度学习模型在区分浸润/非浸润两分类的准确率达到了 78.8%(AUC),区分 IAC/非 IAC(0 期/I 期)两分类的准确率达到了 88.0%(AUC),区分 AAH-AIS/MIA/IAC 三分类的准确率达到了 63.3%(F1)。需要说明的是,本文纳入的亚厘米肺结节大部分为肺磨玻璃结节,这种类型的结节,特别是亚厘米磨玻璃结节,在 CT 图像上由于传统的恶性征象较少出现,浸润前病变和浸润性病变影像表现重叠较高等特征,诊断十分困难,在三分类的诊断上,高年资医师的诊断正确率也只有 56.6%,而我们的深度学习准确率可达到 63.3%,由此可见深度学习在处理这类问题时的优势与前景。本文从构思到发表,经历了数据采集、像素级标注、数据处理、模型开发训练、模型测试、公共数据集申请、下载、标注、测试、论文的攥写、修改、同行评阅、修回等过程,点内的联合研究团队只用了不到 9 个月时间便完成了算法开发测试及论文发表工作。

参考链接:

http://cancerres.aacrjournals.org/content/early/2018/10/02/0008-5472.CAN-18-0696

理论医疗医疗影像CNN
3
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

多任务学习技术

推荐文章
暂无评论
暂无评论~