Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

戴文军:如何用边缘计算+边缘存储打造新一代智能视频云

云栖大会七牛云专场论坛于 9 月 20 日在杭州云栖小镇举行,以「当 Cloud 遇上 AI 为主题,围绕「云」和「人工智能」两个关键词,邀请了多名业内大咖,为大家带来了精彩演讲。七牛云技术副总裁戴文军,在会上作了题为《如何用边缘计算+边缘存储打造新一代智能视频云》的分享。

以下内容为根据现场演讲内容速记的实录整理。

大家下午好。在开始之前,要给大家澄清一下,虽然主持人和很多朋友都说边缘计算现在比较热,但其实今天来看,边缘计算真正意义上的落地不太多,边缘计算的产业化应用带来的应用场景还没有开始。边缘计算中最核心的,我认为是 AI 的发展、大数据的发展。       

那么有哪些领域,边缘存储和边缘计算可以一展身手呢?今天的主题是 Cloud 遇到 AI,我们服务于众多直播、短视频到现在在线教育的客户,最近一年多的时间,我们整个的客户体系多了一个新的大客户群体,比如说智慧医疗、智能家居。这就是一个巨大的变化。

在产业互联网领域,我们要更加「复杂」地处理视频。这一领域上的「Cloud 遇到 AI」,有四个方面的全新挑战。

首先是更稳定的通讯质量。举个例子,我们在看视频时网络不好,卡顿了一下,大不了暂时不看了。但是我们在做手术,在要取证的时候,这种问题就会有大麻烦了。所以这是我认为对于之前视频云的第一大挑战,也最应该去解决的挑战。

第二是更低的延迟。过去电视或者直播的场景,直播我们可以秒开,有三秒以内的延迟。而在新的场景,比如说新零售或者智慧园区,有一个客户经过你的店铺看了一眼商品,你需要快速识别出他的相关信息,比如是不是我们的老客户,他是什么样的购买行为和购买习惯是什么样的,这个场景下延迟超过三秒或者四秒,也许这个客户就离开了,我们就不能建立起联系。在我们智慧的处理体系里,更低的延迟会取得新的突破。    

第三是更大的资源需求。我们现在的生活中,各处都有摄像头,学校、园区、商场等各个场景,可以说摄像头无处不在。但是这个数据的存储,会是一个巨大的体量。同时由于日志记录的关系,它的体量比我们想象中的视频、图片要大得多的多。因为是客户访问日志不断累积起来的,所以它需要更大的资源需求。

但我认为这上面部分不是最最重要的挑战,因为有技术上可以去克服它,用资源去解决它。在互联网的上个阶段,当大家要去做图片应用的时候,我们七牛云会做很多图片处理的相关工作,当大家去做视频的时候,我们会做短视频 SDK 以及美颜、鉴黄等各种功能。不管是通过 SDK 的方式、通过 APP 的方式,甚至通过 SAAS,来解决相关的智能需求。但是谁有能力、或者有机会去解决智慧医疗、智慧家居、智慧园区这些领域的问题呢?任何一个领域都不能去通过复制来解决行业上真正的问题。这个行业深层次的问题不解决,未来整个行业包括 AI 的发展,都会是一个延迟的状态。所以我认为,第四个挑战就是深度的行业融合。

刚刚说提到资源的问题、延迟和通讯的问题,但最终,我认为还是网络。

我相信所有人对于 CDN 都不陌生,我们把静态或者动态的文件、视频,放到离你的手机、电脑最近的节点上去。到你的终端是五毫秒或者十毫秒的延迟。那么数据上行是不是可以用同样的手段解决掉? 网络的问题也可以用 CDN 这样的逻辑去解决,但是并不只是说把存储资源、或者计算资源搬到那边去。对每一个APP 开发者或者行业开发者来说,会带来巨大的负担,如何使用边缘资源是个问题。    

首先我们看边缘存储,边缘存储的产品,大家都很少听得到。整个业界大家会说边缘计算,而只要主机带了硬盘就算是存储了。但这种情况只满足了资源的需求,不是满足我们技术服务的需求,这是最大的一个问题。   

那怎么来解决这样的一个问题呢?在我们今天云存储上,把节点遍布到 CDN 节点,我们的协议是否可以不发生任何变化呢?这是我们今天追求的。所以第一点是用边缘存储解决掉大数据存储,只有这样,不管我们进行大数据的分析或者视觉智能 AI 的分析,就有了一个基础。

存储的问题解决了,是不是要求每个人都要去做计算的基础能力呢? 我们认为,不仅要把我们客户的应用搬到边缘去,把还需要帮客户解决应用的更新以及这些应用的调配。也需要合理地进行伸缩。    

所以就近计算和存储绑定在一起的时候,像是摄像头或者医疗、园区这样的问题,就会较好地解决掉。但我们认为不应该只是把存储力或者计算力放在边缘,而是要把整套体系都搬到边缘去。给我们的客户提供 API,他们只需要告诉我们应该在哪一个地方、需要有多大的调度力、需要多大的存储力就可以了。    

从另一个方面来看,我觉得 P2P 依然是未来发展比较重要的方向。点与点之间如何更快速地去连接,如何更好地优化上行网络,都不是我们今天整个业界关注的热点。但是我认为,要进一步满足 AI 和大数据的发展,上行的优化应该是技术要着重解决的部分。当然大家会说 5G 已经来了,大数据传输已经不是问题了。但是什么时间落地?4G 运营商是不是有那么大的决心把基础设施全部推掉来进入 5G?我觉得有一个过程的。它的速度不会那么快,即使有了 5G,我觉得上传量更大,我们的技术要求会更强。

我们整个的边缘存储和边缘计算叫做「星辰」。究其原因,是因为我们认为所有的计算力都会分布下去,又连接在一起。这种连接不是客户或者自己去做的,而是把它当成一个大的星系来看待,将所有的资源去调配、去分布。

刚刚所说的视频,是我们看到的一些行业变化,以及客户变化带来的一些挑战。智能云的核心点不在于分发,在于我们生产侧。有端、有边缘、有云计算资源的云平台,我们现在会用一些边缘存储,用三副本或者两副本把它存储下来,在计算能力把流的切片、视频的浓缩、视频的结构化,把这些应用能力全部放到边缘去,这样大家可以调我们的 API,可以有我们视频处理的能力。

大家现在使用的手机设备是智能的,但是我们的端呢?我们的摄像头里面真的是每一个都带有智能芯片吗?其实不是这样的,因为这块成本极高。除此之外,还有一个原因是有非常多已有的设备在线上,之前已经部署一期、二期、三期,这些怎么把智能分析的能力加上去?这是目前需要去解决的问题。    

下面以两个案例的场景,来谈谈我们的边缘存储和边缘计算

首先说一下,这是我们客户之前的架构,升级之后的业务架构变成边缘存储来承载。当我们把存储搬到边缘之后,我们可以满足客户巨大体量的要求。因为对于存储、摄像头来说,上行是不收费的,但是每家资源在这上面都非常有限,如果不是用另一块来均衡成本的话,这个代价远远高于存储成本。我们把存储放到边缘,可以满足未来十年、二十年都是没有问题的,现在不用担心云服务商的带宽能力了。   

我们进一步看,对于 IP Camera 的设备,把我们边缘的存储能力、流媒体的能力使用起来,完全可以支撑 7×24 小时的上传。这样来看,整体的摄像头成本以及它运营的成本,会取得一个巨大的下降。到最后变成边缘存储来承接 SD 卡的内容和 NVR 存储的功能。我们边缘存储的上线,是让摄像头在未来走向云存储、可以变现的重要通道。    

再来讲另外一个案例,这是我们现在已经接近于交付的一个客户,他是做智能影楼的。

基于 AI 的智能影楼是一套复杂的系统,他的基础的 IT 资源怎么管?基础的存储怎么管?基础计算怎么管?因为影楼是遍布全国的,一个城市有几十家店,全国有几百家、几千家。是否可以做到只关心他的应用升级,不关心机器系统是怎么维护的,后面是怎么调度的。我们用容器,同时把容器搬到了边缘,中心下发进行边缘容器更新它的业务结构。原来上线一个影楼项目需要五天的时间,现在一到两个小时,这是极大的性能的提升。 我们服务于影楼的产品也同样可以服务于其他行业,比如说地产公司、连锁店的分布式业务。

解决了存储的问题,解决了计算的问题,但是我们核心还没有完全解决的是什么呢?应用落地的问题。我们怎么可以支撑智慧医疗、智慧汽车场景呢?在大的生态里面,任何一家只可以做扇形的一面。

大家能不能将某一个应用上面、某一个场景上面的能力服务化,提供通用的平台,让大家的应用在这个体系里面生根,不管你今天为自己做还是为其他客户做,都可以更多地服务于行业。    

边缘存储和边缘计算,可以在我们的公有云、私有云上去落地。但是它的前提是什么呢?大家都遵循一定的标准。这个标准目前对于应用没有那么限制,就是容器。大家对调用还是有问题,因为应用侧的标准和使用方式不统一,我觉得这是未来需要解决的问题,这不妨碍我们今天走出去的第一步,我们走去大圈圈里面共享。我也希望未来有更多的人走在我们基础的视频架构上面,让整个 Cloud 遇到社会的 AI。

AI 应用体系可以在平台与平台无缝复制,未来的产业互联网可以被真正推动起来。因为产业和产业间的理解有隔阂,所以今天我们做互联网的同学要往产业互联网的方向发展,我觉得还是任重而道远的。但当整个基础平台构建完之后,我们的数据就会成为一个市场,会服务于更多人。谢谢大家!

七牛云
七牛云

七牛云是国内领先的以视觉智能和数据智能为核心的企业级云计算服务商,同时也是国内最有特色的智能视频云服务商,累计为 70 多万家企业提供服务,覆盖了国内80%网民。围绕富媒体场景推出了对象存储、融合 CDN 加速、容器云、大数据平台、深度学习平台等产品、并提供一站式智能视频云解决方案。

产业边缘计算边缘存储
相关数据
调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

推荐文章
暂无评论
暂无评论~