Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

YJango作者

深层学习为何要“Deep”(上)

介绍

为了研究神经网络,我们必须要对什么网络是什么有一个更直观的认识。

一、基本变换:层

神经网络是由一层一层构建的,那么每究竟在做什么?

  • 数学式子\vec{y}= a(W\cdot\vec{x} + {b}),其中\vec{x}是输入向量,\vec{y}是输出向量,\vec{b}是偏移向量,W权重矩阵,a()激活函数。每一层仅仅是把输入\vec x经过如此简单的操作得到\vec y
  • 数学理解:通过如下5种对输入空间(输入向量的集合)的操作,完成 输入空间 —> 输出空间的变换 (矩阵的行空间到列空间)。 注:用“空间”二字的原因是被分类的并不是单个事物,而是一类事物。空间是指这类事物所有个体的集合。

    • 1. 升维/降维
    • 2. 放大/缩小
    • 3. 旋转
    • 4. 平移
    • 5. “弯曲” 这5种操作中,1,2,3的操作由W\cdot\vec{x}完成,4的操作是由+\vec{b}完成,5的操作则是由a()来实现。


每层神经网络的数学理解:用线性变换跟随着非线性变化,将输入空间投向另一个空间
  • 物理理解:对 W\cdot\vec{x} 的理解就是通过组合形成新物质 a()又符合了我们所处的世界都是非线性的特点。

    • 情景:\vec{x}是二维向量,维度是碳原子和氧原子的数量 [C;O],数值且定为[1;1],若确定\vec{y}是三维向量,就会形成如下网络的形状 (神经网络的每个节点表示一个维度)。通过改变权重的值,可以获得若干个不同物质。右侧的节点数决定了想要获得多少种不同的新物质。(矩阵的行数)
  • 1. 如果权重W的数值如(1),那么网络的输出 \vec{y} 就会是三个新物质,[二氧化碳,臭氧,一氧化碳]。 \left[ \begin{matrix} CO_{2}\\ O_{3}\\ CO \end{matrix} \right]= \left[ \begin{matrix} 1 & 2 \\ 0 & 3\\ 1 & 1 \end{matrix} \right] \cdot \left[ \begin{matrix} C \\ O \\ \end{matrix} \right] (1)
  • 2. 也可以减少右侧的一个节点,并改变权重W至(2),那么输出\vec{y} 就会是两个新物质,[ O_{0.3};CO_{1.5}]。 \left[ \begin{matrix} O_{0.3}\\ CO_{1.5}\\ \end{matrix} \right]= \left[ \begin{matrix} 0& 0.3 \\ 1 & 1.5\\ \end{matrix} \right] \cdot \left[ \begin{matrix} C \\ O \\ \end{matrix} \right](2)
  • 3. 如果希望通过层网络能够从[C, O]空间转变到[CO_{2};O_{3};CO]空间的话,那么网络的学习过程就是将W的数值变成尽可能接近(1)的过程 。如果再加一层,就是通过组合[CO_{2};O_{3};CO]这三种基础物质,形成若干更高层的物质。
  • 4. 重要的是这种组合思想,组合成的东西在神经网络中并不需要有物理意义。
每层神经网络的物理理解:通过现有的不同物质的组合形成新物质

二、理解视角:

现在我们知道了每一层的行为,但这种行为又是如何完成识别任务的呢?

数学视角:“线性可分”

  • 一维情景:以分类为例,当要分类正数、负数、零,三类的时候,一维空间的直线可以找到两个超平面(比当前空间低一维的子空间。当前空间是直线的话,超平面就是点)分割这三类。但面对像分类奇数和偶数无法找到可以区分它们的点的时候,我们借助 x % 2(取余)的转变,把x变换到另一个空间下来比较,从而分割。


  • 二维情景:平面的四个象限也是线性可分。但下图的红蓝两条线就无法找到一超平面去分割。

神经网络的解决方法依旧是转换到另外一个空间下,用的是所说的5种空间变换操作。比如下图就是经过放大、平移、旋转、扭曲原二维空间后,在三维空间下就可以成功找到一个超平面分割红蓝两线 (同SVM的思路一样)。

上面是一层神经网络可以做到的,如果把\vec{y} 当做新的输入再次用这5种操作进行第二遍空间变换的话,网络也就变为了二层。最终输出是\vec{y}= a_{2}(W_{2}\cdot(a_{1}(W_{1}\cdot\vec{x} + {b}_{1})) + {b}_{2})。 设想网络拥有很多层时,对原始输入空间的“扭曲力”会大幅增加,如下图,最终我们可以轻松找到一个超平面分割空间。

当然也有如下图失败的时候,关键在于“如何扭曲空间”。所谓监督学习就是给予神经网络网络大量的训练例子,让网络从训练例子中学会如何变换空间。每一层的权重W就控制着如何变换空间,我们最终需要的也就是训练好的神经网络的所有层的权重矩阵。


这里有非常棒的可视化空间变换demo,一定要打开尝试并感受这种扭曲过程。更多内容请看Neural Networks, Manifolds, and Topology

线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。 
增加节点数:增加维度,即增加线性转换能力。 
增加层数:增加激活函数的次数,即增加非线性转换次数。

物理视角:“物质组成”

  • 类比:回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。继续迭代还会有家庭,公司,国家等。这种现象在身边随处可见。并且原子的内部结构与太阳系又惊人的相似。不同层级之间都是以类似的几种规则再不断形成新物质。你也可能听过分形学这三个字。可通过观看从1米到150亿光年来感受自然界这种层级现象的普遍性。


  • 人脸识别情景:我们可以模拟这种思想并应用在画面识别上。由像素组成菱角再组成五官最后到不同的人脸。每一层代表不同的不同的物质层面 (如分子层)。而每层的W存储着如何组合上一层的物质从而形成新物质。 如果我们完全掌握一架飞机是如何从分子开始一层一层形成的,拿到一堆分子后,我们就可以判断他们是否可以以此形成方式,形成一架飞机。 附:Tensorflow playground展示了数据是如何“流动”的。
物质组成视角:神经网络的学习过程就是学习物质组成方式的过程。 
增加节点数:增加同一层物质的种类,比如118个元素的原子层就有118个节点。
增加层数:增加更多层级,比如分子层,原子层,器官层,并通过判断更抽象的概念来识别物体。

三、神经网络的训练

知道了神经网络的学习过程就是学习控制着空间变换方式(物质组成方式)的权重矩阵后,接下来的问题就是如何学习每一层的权重矩阵 W 。

如何训练:

既然我们希望网络的输出尽可能的接近真正想要预测的值。那么就可以通过比较当前网络的预测值和我们真正想要的目标值,再根据两者的差异情况来更新每一层的权重矩阵(比如,如果网络的预测值高了,就调整权重让它预测低一些,不断调整,直到能够预测出目标值)。因此就需要先定义“如何比较预测值和目标值的差异”,这便是损失函数目标函数(loss function or objective function),用于衡量预测值和目标值的差异的方程。loss function的输出值(loss)越高表示差异性越大。那神经网络的训练就变成了尽可能的缩小loss的过程。 所用的方法是梯度下降(Gradient descent):通过使loss值向当前点对应梯度的反方向不断移动,来降低loss。一次移动多少是由学习速率(learning rate)来控制的。

梯度下降的问题:

然而使用梯度下降训练神经网络拥有两个主要难题。

1、局部极小值

梯度下降寻找的是loss function的局部极小值,而我们想要全局最小值。如下图所示,我们希望loss值可以降低到右侧深蓝色的最低点,但loss有可能“卡”在左侧的局部极小值中。

试图解决“卡在局部极小值”问题的方法分两大类:

  • 调节步伐:调节学习速率,使每一次的更新“步伐”不同。常用方法有:
  • 随机梯度下降(Stochastic Gradient Descent (SGD):每次只更新一个样本所计算的梯度
  • 小批量梯度下降(Mini-batch gradient descent):每次更新若干样本所计算的梯度的平均值
  • 动量Momentum):不仅仅考虑当前样本所计算的梯度;Nesterov动量(Nesterov Momentum):Momentum的改进
  • Adagrad、RMSProp、Adadelta、Adam:这些方法都是训练过程中依照规则降低学习速率,部分也综合动量
  • 优化起点:合理初始化权重(weights initialization)、预训练网络(pre-train),使网络获得一个较好的“起始点”,如最右侧的起始点就比最左侧的起始点要好。常用方法有:高斯分布初始权重Gaussian distribution)、均匀分布初始权重(Uniform distribution)、Glorot 初始权重、He初始权、稀疏矩阵初始权重(sparse matrix)

2、梯度的计算

机器学习所处理的数据都是高维数据,该如何快速计算梯度、而不是以年来计算。 其次如何更新隐藏层权重? 解决方法是:计算图:反向传播算法 这里的解释留给非常棒的Computational Graphs: Backpropagation 需要知道的是,反向传播算法是求梯度的一种方法。如同快速傅里叶变换(FFT)的贡献。 而计算图的概念又使梯度的计算更加合理方便。

基本流程图:

下面就结合图简单浏览一下训练和识别过程,并描述各个部分的作用。要结合图解阅读以下内容。但手机显示的图过小,最好用电脑打开

  • 收集训练集(train data):也就是同时有input以及对应label的数据。每个数据叫做训练样本(sample)。label也叫target,也是机器学习中最贵的部分。上图表示的是我的数据库。假设input本别是x的维度是39,label的维度是48。
  • 设计网络结构(architecture):确定层数、每一隐藏层的节点数和激活函数,以及输出层的激活函数损失函数。上图用的是两层隐藏层(最后一层是输出层)。隐藏层所用激活函数a( )是ReLu,输出层的激活函数是线性linear(也可看成是没有激活函数)。隐藏层都是1000节点。损失函数L( )是用于比较距离MSE:mean((output - target)^2)。MSE越小表示预测效果越好。训练过程就是不断减小MSE的过程。到此所有数据的维度都已确定:

    • 训练数据:input \in R^{39} ;label \in R^{48}
    • 权重矩阵:W_{h1}\in R^{1000x39};W_{h2}\in R^{1000x1000} ;W_{o}\in R^{48x1000}
    • 偏移向量:b_{h1}\in R^{1000};b_{h2}\in R^{1000} ;b_{o}\in R^{48}
    • 网络输出:output \in R^{48}


  • 数据预处理(preprocessing):将所有样本的input和label处理成能够使用神经网络的数据,label的值域符合激活函数的值域。并简单优化数据以便让训练易于收敛。比如中心化(mean subtraction)、归一化(normalization)、主成分分析(PCA)、白化(whitening)。假设上图的input和output全都经过了中心化和归一化。
  • 权重初始化(weights initialization)W_{h1},W_{h2},W_{0}在训练前不能为空,要初始化才能够计算loss从而来降低。W_{h1},W_{h2},W_{0}初始化决定了loss在loss function中从哪个点开始作为起点训练网络。上图用均匀分布初始权重(Uniform distribution)。
  • 训练网络(training):训练过程就是用训练数据的input经过网络计算出output,再和label计算出loss,再计算出gradients来更新weights的过程。

    • 正向传递:,算当前网络的预测值output =linear (W_{o} \cdot Relu(W_{h2}\cdot Relu(W_{h1}\cdot input+b_{h1})+b_{h2}) +b_{o})
    • 计算loss:loss = mean((output - target)^2)
    • 计算梯度:从loss开始反向传播计算每个参数parameters)对应的梯度(gradients)。这里用Stochastic Gradient Descent (SGD) 来计算梯度,即每次更新所计算的梯度都是从一个样本计算出来的。传统的方法Gradient Descent是正向传递所有样本来计算梯度。SGD的方法来计算梯度的话,loss function的形状如下图所示会有变化,这样在更新中就有可能“跳出”局部最小值。

    • 更新权重:这里用最简单的方法来更新,即所有参数都 W = W - learningrate * gradient
    • 预测新值:训练过所有样本后,打乱样本顺序再次训练若干次。训练完毕后,当再来新的数据input,就可以利用训练的网络来预测了。这时的output就是效果很好的预测值了。下图是一张实际值预测值的三组对比图。输出数据是48维,这里只取1个维度来画图。蓝色的是实际值,绿色的是实际值。最上方的是训练数据的对比图,而下方的两行是神经网络模型从未见过的数据预测对比图。(不过这里用的是RNN,主要是为了让大家感受一下效果)

注:此部分内容不是这篇文章的重点,但为了理解深层神经网络,需要明白最基本的训练过程。 若能理解训练过程是通过梯度下降尽可能缩小loss的过程即可。 若有理解障碍,可以用python实践一下从零开始训练一个神经网络,体会整个训练过程。若有时间则可以再体会一下计算图自动求梯度的方便利用TensorFlow

结合Tensorflow playground理解5种空间操作物质组成视角

打开网页后,总体来说,蓝色代表正值,黄色代表负值。拿分类任务来分析。

  • 数据:在二维平面内,若干点被标记成了两种颜色。黄色,蓝色,表示想要区分的两类。你可以把平面内的任意点标记成任意颜色。网页给你提供了4种规律。神经网络会根据你给的数据训练,再分类相同规律的点。
  • 输入:在二维平面内,你想给网络多少关于“点”的信息。从颜色就可以看出来,x_{1}左边是负,右边是正,x_{1}表示此点的横坐标值。同理,x_{2}表示此点的纵坐标值。x_{1}^{2}是关于横坐标值的“抛物线”信息。你也可以给更多关于这个点的信息。给的越多,越容易被分开。
  • 连接线:表示权重,蓝色表示用神经元的原始输出,黄色表示用负输出。深浅表示权重的绝对值大小。鼠标放在线上可以看到具体值。也可以更改。在(1)中,当把x_{2}输出的一个权重改为-1时,x_{2}的形状直接倒置了。不过还需要考虑激活函数。(1)中用的是linear。在(2)中,当换成sigmoid时,你会发现没有黄色区域了。因为sigmoid的值域是(0,1)

(1)

(2)

  • 输出:黄色背景颜色都被归为黄点类,蓝色背景颜色都被归为蓝点类。深浅表示可能性的强弱。

上图中所有在黄色背景颜色的点都会被分类为“黄点“,同理,蓝色区域被分成蓝点。在上面的分类分布图中你可以看到每一层通过上一层信息的组合所形成的。权重(那些连接线)控制了“如何组合”。神经网络的学习也就是从数据中学习那些权重Tensorflow playground所表现出来的现象就是“在我文章里所写的“物质组成思想”,这也是为什么我把Tensorflow playground放在了那一部分。

不过你要是把Tensorflow的个名字拆开来看的话,是tensor(张量)的flow(流动)。Tensorflow playground的作者想要阐述的侧重点是“张量如何流动”的。

5种空间变换的理解Tensorflow playground下没有体现5种空间变换的理解。需要打开这个网站尝试:ConvNetJS demo: Classify toy 2D data

左侧是原始输入空间下的分类图,右侧是转换后的高维空间下的扭曲图。

最终的扭曲效果是所有绿点都被扭曲到了一侧,而所有红点都被扭曲到了另一侧。这样就可以线性分割(用超平面(这里是一个平面)在中间分开两类)

四、表现原因

文章的最后稍微提一下深层神经网络。深层神经网络就是拥有更多层数的神经网络

按照上文在理解视角中所述的观点,可以想出下面两条理由关于为什么更深的网络会更加容易识别,增加容纳变异体(variation)(红苹果、绿苹果)的能力、鲁棒性(robust)。

数学视角:变异体(variation)很多的分类的任务需要高度非线性的分割曲线。不断的利用那5种空间变换操作将原始输入空间像“捏橡皮泥一样”在高维空间下捏成更为线性可分/稀疏的形状。

物理视角:通过对“抽象概念”的判断来识别物体,而非细节。比如对“飞机”的判断,即便人类自己也无法用语言或者若干条规则来解释自己如何判断一个飞机。因为人脑中真正判断的不是是否“有机翼”、“能飞行”等细节现象,而是一个抽象概念。层数越深,这种概念就越抽象,所能涵盖的变异体就越多,就可以容纳战斗机,客机等很多种不同种类的飞机。

超智能体
超智能体

分享简单易懂深度学习知识。

入门深度学习神经网络
1
相关数据
激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

高斯分布技术

正态分布是一个非常常见的连续概率分布。由于中心极限定理(Central Limit Theorem)的广泛应用,正态分布在统计学上非常重要。中心极限定理表明,由一组独立同分布,并且具有有限的数学期望和方差的随机变量X1,X2,X3,...Xn构成的平均随机变量Y近似的服从正态分布当n趋近于无穷。另外众多物理计量是由许多独立随机过程的和构成,因而往往也具有正态分布。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

傅里叶变换技术

傅里叶变换(法语:Transformation de Fourier、英语:Fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。

反向传播算法技术

反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法计算对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 在神经网络上执行梯度下降法的主要算法。该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

随机梯度下降技术

梯度下降(Gradient Descent)是遵循成本函数的梯度来最小化一个函数的过程。这个过程涉及到对成本形式以及其衍生形式的认知,使得我们可以从已知的给定点朝既定方向移动。比如向下朝最小值移动。 在机器学习中,我们可以利用随机梯度下降的方法来最小化训练模型中的误差,即每次迭代时完成一次评估和更新。 这种优化算法的工作原理是模型每看到一个训练实例,就对其作出预测,并重复迭代该过程到一定的次数。这个流程可以用于找出能导致训练数据最小误差的模型的系数。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

降维技术

降维算法是将 p+1 个系数的问题简化为 M+1 个系数的问题,其中 M<p。算法执行包括计算变量的 M 个不同线性组合或投射(projection)。然后这 M 个投射作为预测器通过最小二乘法拟合一个线性回归模型。两个主要的方法是主成分回归(principal component regression)和偏最小二乘法(partial least squares)。

主成分分析技术

在多元统计分析中,主成分分析(Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。

动量技术

优化器的一种,是模拟物理里动量的概念,其在相关方向可以加速SGD,抑制振荡,从而加快收敛

推荐文章
暂无评论
暂无评论~