Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

从TPU3.0到DeepMind支持的Android P,谷歌I/O 2018的AI亮点全在这了

2018 年 5 月 8 日,一年一度的谷歌 I/O 开发者大会在美国加州山景城开幕。2016 年谷歌从移动优先到人工智能优先(AI-first),两年来我们从谷歌 I/O 看到了谷歌如何践行这一战略。在今日刚刚结束的 Keynote 中,机器学习依旧是整个大会的主旋律:谷歌发布了 TPU 3.0、Google Duplex,以及基于 AI 核心的新一代安卓操作系统 Android P,也介绍了自己在 News、Map、Lens 等众多产品中对 AI 与机器学习模型的应用。本文带你一览谷歌 I/O 2018 首日 keynote 的核心亮点。

在今天的 Keynote 中,谷歌 CEO 桑德尔·皮查伊等人介绍了谷歌一年来的多方面 AI 研究成果,例如深度学习医疗、TPU3.0、Google Duplex 等,也展示了 AI 如何全方位地融入了谷歌每一条产品线,从安卓到 Google Lens 和 Waymo。在本文中,机器之心对 Keynote 的核心内容进行了整理。

深度学习医疗

大会刚开始,昨天谷歌所有的 AI 研究合并出的 Google AI 发布了一篇博客,介绍谷歌在医疗领域的研究:

联合斯坦福医学院、加州大学旧金山分校 、芝加哥大学医学中心,谷歌今天在 Nature Partner Journals: Digital Medicine 上发布了一篇论文《Scalable and Accurate Deep Learning with Electronic Health Records》。

在此研究中,谷歌使用深度学习模型根据去识别的电子病历做出大量与病人相关的预测。重要的是,谷歌能够使用原始数据,不需要人工提取、清洁、转换病历中的相关变量。

在预测之前,深度学习模型读取早期到现在所有的数据点,然后学习对预测输出有帮助的数据。由于数据点数量巨大,谷歌基于循环神经网络与前馈网络开发出了一种新型的深度学习建模方法。

病人病历中的数据以时间线的形式展示

至于预测准确率(标准:1.00 为完美得分),如果病人就医时间较长,论文提出的模型预测得分为 0.86,而传统的 logistic 回归模型得分为 0.76。这一预测准确率已经相当惊人。

Looking to Listen:音频-视觉语音分离模型

而后,皮查伊介绍了谷歌博客不久前介绍的新型音频-视觉语音分离模型。

在论文《Looking to Listen at the Cocktail Party》中,谷歌提出了一种深度学习音频-视觉模型,用于将单个语音信号与背景噪声、其他人声等混合声音分离开来。这种方法用途广泛,从视频中的语音增强和识别、视频会议,到改进助听器,不一而足,尤其适用于有多个说话人的情景。

据介绍,这项技术的独特之处是结合了输入视频的听觉和视觉信号来分离语音。直观地讲,人的嘴的运动应当与该人说话时产生的声音相关联,这反过来又可以帮助识别音频的哪些部分对应于该人。视觉信号不仅在混合语音的情况下显著提高了语音分离质量(与仅仅使用音频的语音分离相比),它还将分离的干净语音轨道与视频中的可见说话者相关联。

在谷歌提出的方法中,输入是具有一个或多个说话人的视频,其中我们需要的语音受到其他说话人和/或背景噪声的干扰。输出是将输入音频轨道分解成的干净语音轨道,其中每个语音轨道来自视频中检测到的每一个人。

皮查伊还介绍了谷歌其他 NLP 应用,例如通过谷歌的键盘输入摩斯电码让语言障碍者重新获得表达能力、GMail 中利用语言模型与语境信息预测输入。

之后,皮查伊介绍了谷歌在计算机领域的一些研究成果与应用,包括医疗影像方面的研究,移动设备中应用的照片理解、抠图、自动上色和文档处理等。

TPU 3.0

去年,谷歌 I/0 公布了 TPU 2.0,且开放给了谷歌云客户。今天,皮查伊正式宣布 TPU 3.0 版本。

皮查伊介绍,TPU 3.0 版本功能强大,采用液冷系统,计算性能是 TPU 2.0 的 8 倍,可解决更多问题,让用户开发更大、更好、更准确的模型。更多有关 TPU 3.0 的信息也许会在之后放出。

Google Assitant 与 Google Duplex

集成谷歌人机交互研究的 Google Assistant 在今日的 keynote 中必然会亮相。Google Assitant 负责工程的副总裁 Scott Huffman 介绍了 Google Assitant 过去一年的成果,谷歌产品管理总监 Lilian Rincon 介绍了带有视觉体验的 Google Assistant 产品,且有数款产品将在今年 7 月份发布。

而后谷歌 CEO 桑德尔·皮查伊在 Keynote 中展示了语言交互的重要性,并正式介绍了一种进行自然语言对话的新技术 Google Duplex。这种技术旨在完成预约等特定任务,并使系统尽可能自然流畅地实现对话,使用户能像与人对话那样便捷。

这种自然的对话非常难以处理,因为用户可能会使用更加不正式或较长的句子,且语速和语调也会相应地增加。此外,在交互式对话中,同样的自然语句可能会根据语境有不同的意思,因为人类之间的自然对话总是根据语境尽可能省略一些语言。

为了解决这些问题,Duplex 基于循环神经网络TensorFlow Extended(TFX)在匿名电话会话数据集上进行训练。这种循环网络使用谷歌自动语音识别(ASR)技术的输出作为输入,包括语音的特征、会话历史和其它会话参数。谷歌会为每一个任务独立地训练一个理解模型,但所有任务都能利用共享的语料库。此外,谷歌还会使用 TFX 中的超参数优化方法优化模型的性能。

如下所示,输入语音将输入到 ASR 系统并获得输出,在结合 ASR 的输出与语境信息后可作为循环神经网络的输入。这一深度 RNN 最终将基于输入信息输出对应的响应文本,最后响应文本可传入文本转语音(TTS)系统完成对话。RNN 的输出与 TTS 系统对于生成流畅自然的语音非常重要,这也是 Duplex 系统关注的核心问题。

在 Duplex 系统的语音生成部分,谷歌结合了拼接式的 TTS 系统和合成式的 TTS 系统来控制语音语调,即结合了 Tacotron 和 WaveNet。

由于这样的系统引入了「嗯、额」等停顿语,系统生成的语音会显得更加的自然。当结合拼接式 TTS 引擎中大量不同的语音单元或添加合成式停顿时,这些引入的停顿语允许系统以自然的方式表示它还需要一些处理时间。

总的来说,Google Duplex 的这些结构与方法对生成更自然的对话与语音有非常大的帮助。目前虽然主要是针对特定领域中的语言交互,但确实提升了语音会话中的用户体验。

安卓以及闪现的 DeepMind

即将在今年 9 月迎来自己 10 岁生日的安卓也在 I/O 上宣布了新一代操作系统。继承 Android Oreo 工作的新版安卓系统被命名为 Android P。

「本次发布有三个主题,分别是智能(Intelligence)、简洁(Simplicity)与数字健康(Digital Wellbeing)。Android P 是我们『AI 位于操作系统核心』愿景的第一步,而 AI 也是『智能』主题的奠基石。」谷歌工程副总裁 Dave Burke 如是展开了他的演讲。

智能部分里首先介绍了两个功能,Adaptive Battery 自适应电池管理系统和 Adaptive Brightness 自适应亮度调节系统。

其中,Adaptive Battery 通过卷积神经网络来预测用户接下来会使用的应用程序,通过适应用户的使用模式将电池仅用于你接下来可能需要的应用程序中,这减少了 30% 的后台 CPU 唤醒。而 Adaptive Brightness 则不再单纯根据照明情况调节亮度,而是加上了用户喜好和所处环境因素。超过一半的测试用户减少了他们手动调节亮度条的频率。

事实上,这两个功能均来自之前一度被美媒质疑「烧钱还傲娇不干实事」的 DeepMindDeepMind 本次并没有直接在 I/O 露出,只是在博客上发表了一篇文章(https://deepmind.com/blog/deepmind-meet-android/),说明了 Android 的这两个新功能来自 DeepMind for Google 团队。

除此之外,Android P 也将去年发布的、准确率达到 60% 的「用户接下来可能使用哪个 App」预测更进一步,转而预测「用户接下来可能用什么 App 进行什么操作」,并直接在上滑菜单顶部呈现给用户。

Dave Burke 在介绍上述每一个功能时都着重强调了所有的预测均由在端上运行的机器学习模型完成,以确保用户隐私得到最大程度的保护。

除了将 AI 融入操作系统的优化之外,Android 还试图降低非机器学习背景的开发者使用相关技能的门槛:包括图片标注、文字识别、智能回复等一系列 AI 相关的 API 将以 ML Kit 的形式开放给开发者。

「你可以将 ML Kit 视作基于 TensorFlow Lite 提供的、为移动设备优化过的、随拿随用机器学习模型。」Dave Kurve 介绍说。而且,谷歌非常大方地同时对 iOS 系统开放了这一 API 集。

开发者今天就能在 Pixel 上实验 Android P Beta 的效果了。值得一提的是,除了 Pixel 之外,Android P Beta 还对其他 7 家手机生产厂商的旗舰机开放,其中有 4 家都来自中国,它们分别是小米、vivo、oppo 和一加。

无人驾驶

昨日,起源于斯坦福人工智能实验室的自动驾驶汽车初创公司 Drive.ai 于 7 日宣布,将与德克萨斯州的弗里斯科政府以及 Hall 集团进行合作,在德州落地首个无人出租车服务。而在今天的 Keynote 中,Waymo CEO John Krafcik 通过视频展示了居住在凤凰城的一些人参与其 EarlyRider 项目(即体验 Waymo 的自动驾驶技术)的场景。Krafcik 称 Waymo 将在今年于凤凰城开始 passenger-pickup 项目,凤凰城是第一站。

结语

一年一度的谷歌 I/O 开发者大会首日 Keynote 中的核心内容如上,相比于偏重机器学习技术的 2016 年与 2017 年,今年的内容更多关于 AI 的应用与产品。两年来,我们看到了谷歌如何践行 AI First 战略。接下来几天,机器之心将会继续报道谷歌 I/O 2018 的更多精彩内容。

产业Google I/O 2018谷歌产品
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

超参数优化技术

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

卷积技术

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

语料库技术

语料库一词在语言学上意指大量的文本,通常经过整理,具有既定格式与标记;事实上,语料库英文 "text corpus" 的涵意即为"body of text"。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

暂无评论
暂无评论~