Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

中文课程!台大李宏毅机器学习公开课2019版上线

台大教授李宏毅的机器学习课程经常被认为是中文开放课程中的首选。李教授的授课风格风趣幽默,通俗易懂,其课程内容中不仅有机器学习、深度学习的基础知识,也会介绍 ML 领域里的各种最新技术。近日,2019 版的课程资料与视频终于上线了!

  • 课程资料链接:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML19.html

  • 课程视频(Bilibili):https://www.bilibili.com/video/av46561029/

  • YouTube 链接:https://www.youtube.com/playlist?list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4

李宏毅(Hung-yi Lee)目前任台湾大学电机工程学系和电机资讯学院的助理教授,他曾于 2012 年获得台湾大学博士学位,并于 2013 年赴麻省理工学院(MIT)计算机科学和人工智能实验室(CSAIL)做访问学者。他的研究方向主要是机器学习深度学习)和语音识别

此前,他的 2016 版《机器学习》课程视频曾是流行学习资料。

有一个懂二次元的教授真不容易。

2019 版《机器学习》课程目录,括号内为新增内容:

  • 回归、梯度下降

  • 分类、逻辑回归,错分类的原因

  • 深度学习反向传播异常检测

  • 卷积神经网络、Keras(对抗样本攻击)

  • 训练深度学习模型(可解释 AI)

  • 循环神经网络(Order LSTM)

  • Ensemble

  • 半监督学习迁移学习(终身学习)

  • 元学习

  • seq2seq(Transformer)

  • (Few/Zero shot learning)

  •  无监督学习(BERT

  • 强化学习(更细化)

  • (网络压缩)

  • 生成对抗网络(GLOW)

  • (无监督域适应)

  • 为什么要使用深度学习深度学习理论)

看过李宏毅 2017 秋季机器学习课程的同学都知道,他介绍的基础内容非常仔细。例如对于循环神经网络,他会带我们手动运算一遍,从而弄清楚各时间步的输入、储存的记忆和具体运算过程等等。在 19 年的新课中,李宏毅重点开放新课相关的视频与作业。

其中新增课程大部分都是近来比较流行的研究前沿,例如 Seq2Seq 中的全注意力网络 Transformer、生成模型最近流行的新范式流模型(Glow)。这些内容可作为以前 17 年秋季课程的补充,从而让视频整体更接近当下前沿。

目前李宏毅已经放出了异常检测和对抗攻击的视频,它们都是新增加的内容。这些新增的内容最好可以和主课程一起看,因此可以有更好的理解。例如异常检测何以和深度学习基础一起看,对抗攻击可以和卷积神经网络一起看等等。

如上展示的是 YouTube 视频截图,还没科学上网的同学也可以直接看爱可可老师传到 B 站的资源。当然 YouTube 除了新更新的一系列课程,李宏毅老师已经发布了更多的课程主题,例如线性代数、深度强化学习生成对抗网络深度学习理论、机器学习(17 年秋季)等。

其中 17 年秋季的机器学习机器学习深度学习做了一个整体的概要,这也是李宏毅课程必看的一部分。学完机器学习课程后,基本上我们对各种主题都有一定的理解,因此可以进一步看他关于深度学习高级主题、生成对抗网络等的见解。如下为李宏毅开放的各种主题与视频列表:

最后,看视频做作业都需要坚持,希望大家都能将这些资源化为自己的知识。

入门李宏毅课程国立台湾大学
131
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

基于Transformer 的双向编码器表征技术

BERT是谷歌发布的基于双向 Transformer的大规模预训练语言模型,该预训练模型能高效抽取文本信息并应用于各种NLP任务,并刷新了 11 项 NLP 任务的当前最优性能记录。BERT的全称是基于Transformer的双向编码器表征,其中“双向”表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息。

深度强化学习技术

强化学习(Reinforcement Learning)是主体(agent)通过与周围环境的交互来进行学习。强化学习主体(RL agent)每采取一次动作(action)就会得到一个相应的数值奖励(numerical reward),这个奖励表示此次动作的好坏。通过与环境的交互,综合考虑过去的经验(exploitation)和未知的探索(exploration),强化学习主体通过试错的方式(trial and error)学会如何采取下一步的动作,而无需人类显性地告诉它该采取哪个动作。强化学习主体的目标是学习通过执行一系列的动作来最大化累积的奖励(accumulated reward)。 一般来说,真实世界中的强化学习问题包括巨大的状态空间(state spaces)和动作空间(action spaces),传统的强化学习方法会受限于维数灾难(curse of dimensionality)。借助于深度学习中的神经网络,强化学习主体可以直接从原始输入数据(如游戏图像)中提取和学习特征知识,然后根据提取出的特征信息再利用传统的强化学习算法(如TD Learning,SARSA,Q-Learnin)学习控制策略(如游戏策略),而无需人工提取或启发式学习特征。这种结合了深度学习的强化学习方法称为深度强化学习。

逻辑回归技术

逻辑回归(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。

半监督学习技术

半监督学习属于无监督学习(没有任何标记的训练数据)和监督学习(完全标记的训练数据)之间。许多机器学习研究人员发现,将未标记数据与少量标记数据结合使用可以显着提高学习准确性。对于学习问题的标记数据的获取通常需要熟练的人类代理(例如转录音频片段)或物理实验(例如,确定蛋白质的3D结构或确定在特定位置处是否存在油)。因此与标签处理相关的成本可能使得完全标注的训练集不可行,而获取未标记的数据相对便宜。在这种情况下,半监督学习可能具有很大的实用价值。半监督学习对机器学习也是理论上的兴趣,也是人类学习的典范。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

异常检测技术

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。 异常也被称为离群值、新奇、噪声、偏差和例外。

元学习技术

元学习是机器学习的一个子领域,是将自动学习算法应用于机器学习实验的元数据上。现在的 AI 系统可以通过大量时间和经验从头学习一项复杂技能。但是,我们如果想使智能体掌握多种技能、适应多种环境,则不应该从头开始在每一个环境中训练每一项技能,而是需要智能体通过对以往经验的再利用来学习如何学习多项新任务,因此我们不应该独立地训练每一个新任务。这种学习如何学习的方法,又叫元学习(meta-learning),是通往可持续学习多项新任务的多面智能体的必经之路。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

线性代数技术

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

推荐文章
加油打卡